
IMS

Common Service Layer Guide and

Reference

Version 9

SC18-7816-01

���

IMS

Common Service Layer Guide and

Reference

Version 9

SC18-7816-01

���

Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

229.

Second Edition (December 2005) (Softcopy Only)

This edition replaces or makes obsolete the previous edition, SC18-7816-00. This edition is available in softcopy

format only. The technical changes for this version are summarized under “Summary of Changes” on page xv.

© Copyright International Business Machines Corporation 2002, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures . vii

Tables . ix

About This Book . xi

Summary of Contents . xi

IBM Product Names Used in This Information xi

How to Read Syntax Diagrams xii

How to Send Your Comments xiv

Summary of Changes . xv

Changes to the Current Edition of This Book for Version 9 xv

Changes to This Book for IMS Version 9 xv

Library Changes for IMS Version 9 xv

New and Revised Titles . xvi

Organizational Changes . xvi

Terminology Changes . xvi

Accessibility Enhancements xvii

Chapter 1. Common Service Layer Introduction 1

What Is The CSL? . 1

The CSL in An IMSplex . 1

A Simplified CSL Configuration 3

CSL Managers . 3

CSL Operations Manager . 3

CSL Resource Manager . 4

CSL Structured Call Interface 4

Using a Single Point of Control (SPOC) Program in CSL 5

CSL Configuration Examples . 7

Chapter 2. Using The Common Service Layer in an IMSplex 13

System Definition and Tailoring Considerations for the CSL 13

Updating the z/OS Program Properties Table for the CSL 13

Defining PROCLIB Members for the CSL 14

Global Online Change in a CSL 15

General Guidelines for Writing CSL Requests 16

Using an ECB with CSL Requests 16

CSL Manager Requests . 17

Releasing Storage with CSLSCBFR 19

Environmental Requirements for SCI Requests 19

Considerations for Writing Clients for the CSL 21

Planning Considerations for Writing Clients for the CSL 21

Registering Clients to CSL Managers 22

Sending Commands to the IMSplex 23

Querying Statistics from the IMSplex Using CSLZQRY 24

CSLZQRY: Query Request 24

CSLZQRY Request Parameters 24

Shutting Down the CSL . 26

CSLZSHUT: Shut Down Request 26

Shutting Down the CSL Using z/OS Commands 28

Using the z/OS Automatic Restart Manager with the CSL 29

Chapter 3. CSL Operations Manager 31

© Copyright IBM Corp. 2002, 2005 iii

||

||

||

Overview of the CSL Operations Manager 31

CSL OM Definition and Tailoring 31

CSL OM Startup Procedure 31

CSL OM Execution Parameters 32

BPE Considerations for the CSL OM 34

CSL OM Initialization Parameters PROCLIB Member 35

CSL OM Administration . 37

Starting or Restarting the CSL OM 37

Registering Command Processing Clients in a CSL 37

Shutting Down the CSL OM 38

Command Processing Considerations in a CSL OM 38

CSL OM User Exit Routines . 40

CSL OM Client Connection User Exit 40

CSL OM Initialization/Termination User Exit 42

CSL OM Input User Exit . 44

CSL OM Output User Exit . 46

CSL OM Security User Exit 50

CSL OM Statistics Available through BPE Statistics User Exit 52

CSL Automated Operator Program Requests 55

CSLOMCMD: Command Request 55

CSLOMI: API Request . 63

CSLOMQRY: Query Request 74

CSL OM Command Processing Client Requests 78

CSLOMBLD: Command Registration Build 79

CSLOMDRG: Command Deregistration Request 81

CSLOMOUT: Unsolicited Output Request 82

CSLOMRDY: Ready Request 84

CSLOMREG: Command Registration Request 85

CSLOMRSP: Command Response Request 88

CSL OM Automated Operator Program Clients 91

How AOP Clients that Run on the Host Communicate with the CSL OM . . . 91

How AOP Clients that Run on a Workstation Communicate with the CSL OM 92

Command Processing Clients and the CSL OM 93

CSL OM XML Output . 93

CSL OM Directives . 94

CSL OM Command Directive 94

CSL OM Response Directives 96

Chapter 4. CSL Resource Manager 97

Overview of the CSL Resource Manager 97

Maintaining Global Resource Information with the CSL RM 98

Resource Structure Duplexing Requirements for CSL RM 99

How the CSL RM Repopulates a Resource Structure 99

How z/OS Rebuilds a Resource Structure 99

CSL RM Definition and Tailoring 99

CSL RM Startup Procedure 99

CSL RM Execution Parameters 100

CSL RM Initialization Parameters PROCLIB Member 101

BPE Considerations for the CSL RM 103

CSL RM Administration . 104

Starting the CSL RM . 104

Shutting Down the CSL RM 104

CSL RM User Exit Routines 105

CSL RM Client Connection User Exit 105

CSL RM Initialization/Termination User Exit 107

CSL RM Statistics Available through BPE Statistics User Exit 108

iv Common Service Layer Guide and Reference

Writing a CSL RM Client . 111

CSL RM Requests . 112

Using CSL RM Requests to Manage Global Resources 112

Using CSL RM Requests to Coordinate IMSplex-wide Processes 112

CSLRMDEL: Delete Resources 113

CSLRMDRG: Deregister Clients 117

CSLRMPRI: Process Initiate 118

CSLRMPRR: Process Respond 121

CSLRMPRS: Process Step 123

CSLRMPRT: Process Terminate 129

CSLRMQRY: Query Resources 131

CSLRMREG: Register Clients 136

CSLRMUPD: Update Resources 140

CSL RM Directives . 145

CSL RM Repopulate Structure Directive 145

CSL RM Structure Failed Directive 146

CSL RM Process Step Directive 146

CSL RM Process Step Response Directive 148

Chapter 5. CSL Structured Call Interface 149

Overview of the CSL SCI . 149

CSL SCI Definition and Tailoring 149

CSL SCI Startup Procedure 149

BPE Considerations for the CSL SCI 151

CSL SCI Initialization Parameters PROCLIB Member 152

CSL SCI Administration . 154

Starting the CSL SCI . 154

Shutting Down the CSL SCI 154

CSL SCI Security . 155

CSL SCI User Exit Routines 155

CSL SCI Client Connection User Exit 155

CSL SCI Initialization/Termination User Exit 157

CSL SCI Statistics Available through BPE Statistics User Exit 159

CSL SCI IMSplex Member Exit Routines 162

CSL SCI Input Exit Routine 163

CSL SCI Notify Client Exit Routine 166

Writing a CSL SCI Client . 169

How SCI views authorized and non-authorized IMSplex members 170

Sequence of CSL SCI Requests 170

Advanced CSL SCI Requests 171

CSL SCI Requests . 171

CSLSCBFR: Buffer Return Request 172

CSLSCDRG: Deregistration Request 174

CSLSCMSG: Send Message Request 175

CSLSCQRY: Query Request 182

CSLSCQSC: Quiesce Request 185

CSLSCRDY: Ready Request 187

CSLSCREG: Registration Request 188

CSLSCRQR Request Return Request 194

CSLSCRQS: Send Request Request 197

Appendix A. CSL Operations Manager XML Output 205

CSLOMI Output . 205

CSLOMCMD Output . 209

CSLOMQRY Output . 210

Descriptions of XML Tags Returned as CSL OM Response 212

Contents v

||

Appendix B. REXX SPOC API and the CSL 221

Using the REXX SPOC API Environment with the CSL OM 221

Setting Up the REXX Environment in a CSL 221

Setting Up the IMSplex Environment 221

Issuing Type-2 IMS Commands 222

Retrieving Command Responses 223

Ending the IMSSPOC Environment 223

REXX SPOC Return and Reason Codes 223

REXX Samples and Examples 224

Sample REXX Program . 224

REXX Batch Job Example 225

Autonomic Computing Examples 227

Notices . 229

Trademarks . 231

Bibliography . 233

IMS Version 9 Library . 233

Supplementary Publications . 233

Publication Collections . 233

Accessibility Titles Cited in This Library 234

Index . 235

vi Common Service Layer Guide and Reference

||

Figures

 1. IMSplex Environment Including a CSL . 2

 2. SPOC Application in an IMSplex . 5

 3. Multiple SPOC Users in an IMSplex . 6

 4. Sample IMSplex Configuration with CSL . 8

 5. IMSplex Minimum CSL Configuration . 9

 6. IMSplex Mixed Version CSL Configuration . 10

 7. IMSplex DBCTL CSL Configuration . 10

 8. Shared Queues in an IMSplex without a CSL . 11

 9. Shared Queues in an IMSplex Environment with a CSL 12

10. IMSplex Single System CSL Configuration . 12

11. SCHEDxx member . 13

12. Sample OM Startup Procedure . 32

13. OM User Exit List PROCLIB Member . 35

14. CSLOIxxx PROCLIB member . 37

15. Command Routing in an IMSplex with CSL . 39

16. Sample Input Buffer Passed to CSLOMI . 66

17. CSLOMBLD Example Statements . 80

18. Sample Resource Manager Startup Procedure 100

19. CSLRIxxx PROCLIB Member . 103

20. RM User Exit PROCLIB Member . 104

21. SCI Sample Startup Procedure . 150

22. Sample SCI User Exit List PROCLIB Member . 152

23. Sample CSLSIxxx PROCLIB Member . 154

24. FACILITY Profile Example . 155

25. CSLOMI XML Output . 206

26. Issue IMS Command example . 207

27. Query Client List example . 208

28. Query Command Syntax example . 209

29. CSLOMCMD Output . 210

30. CSLOMQRY Output . 211

31. Command Response Header Format . 215

32. Sorted Results . 216

33. Sample XML to Illustrate KEY= . 217

34. <cmdrsphdr> Sample Tags . 218

35. SPOC Output from <cmdrsphdr> . 219

36. Examples of type-2 commands . 222

37. Sample REXX Program . 225

38. Sample batch job . 226

39. REXXSPOC sample program . 226

40. Sample Output . 227

41. Autonomic Example 1 . 228

42. Autonomic Example 2 . 228

© Copyright IBM Corp. 2002, 2005 vii

||

||

||
||

||
||

viii Common Service Layer Guide and Reference

Tables

 1. Licensed Program Full Names and Short Names xi

 2. A List of All of the CSL Manager Requests . 17

 3. Environment for SCI Requests Using the Authorized Interface 19

 4. Environment for SCI Requests Using the Non-Authorized Interface 20

 5. Environment for CSLSCREG and CSLSCDRG Requests Using the Authorized Interface 20

 6. Environment for CSLSCREG and CSLSCDRG Requests Using the Non-Authorized Interface 20

 7. ARM element names . 29

 8. Comparing OM and IMS Security . 39

 9. OM Client Connection User Exit Parameter List--Client Connect 41

10. OM Client Connection User Exit Parameter List--Client Disconnect 41

11. OM Init/Term User Exit Parameter List--OM Initialization 43

12. OM Init/Term User Exit Parameter List--OM Termination 43

13. OM Init/Term User Exit Parameter List--IMSplex Initialization 43

14. OM Init/Term User Exit Parameter List--IMSplex Termination 43

15. OM Input User Exit Parameter List--Command Input 45

16. OM Output User Exit Parameter List--Command Response 47

17. OM Output User Exit Parameter List--Undeliverable Output 47

18. OM Output User Exit Parameter List--Unsolicited Output 49

19. OM Security User Exit Parameter List . 50

20. OM Statistics Header . 52

21. OM Statistics Record CSLOST1 . 53

22. OM Statistics Record CSLOST2 . 54

23. CSLOMCMD Return and Reason Codes . 59

24. CSLOMI Return and Reason Codes . 69

25. CLSOMQRY Return and Reason Codes . 78

26. CLSOMDRG Return and Reason Codes . 82

27. CLSOMOUT Return and Reason Codes . 84

28. CLSOMRDY Return and Reason Codes . 85

29. CLSOMREG Return and Reason Codes . 88

30. CLSOMREG Completion Codes . 88

31. CLSOMRSP Return and Reason Codes . 91

32. Sequence of requests for AOP running on the host 92

33. Sequence of requests for AOP running on the workstation 92

34. Sequence of requests for a command processing client 93

35. RM Client Connection User Exit Parameter List--Client Connect 106

36. RM Client Connection User Exit Parameter List--Client Disconnect 106

37. RM Init/Term User Exit Parameter List--RM Initialization 107

38. RM Init/Term User Exit Parameter List--RM Termination 108

39. RM Init/Term User Exit Parameter List--IMSplex Initialization 108

40. RM Init/Term User Exit Parameter List--IMSplex Termination 108

41. RM Statistics Header . 109

42. RM Statistics Record CSLRST1 . 109

43. RM Statistics Record CSLRST2 . 110

44. Sequence of Requests for RM Client . 111

45. Sequence of Requests for RM Client Participating in IMSplex-wide Process 111

46. CSLRMDEL Return and Reason Codes . 116

47. CSLRMPRI Return and Reason Codes . 120

48. CSLRMPRS Return and Reason Codes . 128

49. CSLRMQRY Return and Reason Codes . 135

50. CSLRMREG Return and Reason Codes . 139

51. CSLRMUPD Return and Reason Codes . 144

52. SCI Client Connection User Exit Parameter List 156

53. SCI Init/Term User Exit Parameter List--SCI Initialization 158

© Copyright IBM Corp. 2002, 2005 ix

||

||

54. SCI Init/Term User Exit Parameter List--SCI Termination 158

55. SCI Init/Term User Exit Parameter List--IMSplex Initialization 158

56. SCI Init/Term User Exit Parameter List--IMSplex Termination 158

57. SCI Statistics Header CSLSSTX . 159

58. SCI Statistics Record CSLSST1 . 160

59. SCI Statistics Record CSLSST2 . 161

60. SCI Member Statistics Record CSLSST3 . 161

61. Client SCI Input Exit Routine parameter List - parameter List Header 164

62. Client SCI Input Exit Routine parameter List - Message Data 164

63. Client SCI Input Exit Routine parameter List - Input Source Data 165

64. SCI Notify Client Exit Routine parameter List Header 168

65. SCI Notify Client Exit Routine Parameter List - Subject Data 168

66. Sequence of requests for SCI client . 171

67. Advanced SCI requests for IMSplex members 171

68. CSLSCBFR Return and Reason Codes . 173

69. CSLSCDRG Return and Reason Codes . 175

70. CSLSCMSG Return and Reason Codes . 181

71. CSLSCQRY Return and Reason Codes . 185

72. CSLSCQSC Return and Reason Codes . 186

73. CSLSCRDY Return and Reason Codes . 188

74. CSLSCREG Return and Reason Codes . 193

75. CSLSCRQR Return and Reason Codes . 196

76. CSLSCRQS Return and Reason Codes . 202

77. REXX SPOC Return and Reason Codes . 224

x Common Service Layer Guide and Reference

About This Book

This information is available as part of the Information Management Software for

z/OS® Solutions Information Center. To view the information within the Information

Management Software for z/OS Solutions Information Center, go to

publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp. This information is also

available in PDF and BookManager® formats. To get the most current versions of

the PDF and BookManager formats, go to the IMS™ Library page at

www.ibm.com/software/data/ims/library.html.

The IMS Version 9: Common Service Layer Guide and Reference helps IMS

system programmers and system operators manage system administration and

operations tasks across an IMS sysplex (hereafter called IMSplex).

Summary of Contents

This book includes the following information:

v Chapter 1, “Common Service Layer Introduction,” on page 1

v Chapter 2, “Using The Common Service Layer in an IMSplex,” on page 13

v Chapter 3, “CSL Operations Manager,” on page 31

v Chapter 4, “CSL Resource Manager,” on page 97

v Chapter 5, “CSL Structured Call Interface,” on page 149

v Appendix A, “CSL Operations Manager XML Output,” on page 205

v Appendix B, “REXX SPOC API and the CSL,” on page 221

IBM Product Names Used in This Information

In this information, the licensed programs shown in Table 1 are referred to by their

short names.

 Table 1. Licensed Program Full Names and Short Names

Licensed program full name Licensed program short name

IBM® Application Recovery Tool for IMS and

DB2®

Application Recovery Tool

IBM CICS® Transaction Server for OS/390® CICS

IBM CICS Transaction Server for z/OS CICS

IBM DB2 Universal Database™ DB2 Universal Database

IBM DB2 Universal Database for z/OS DB2 UDB for z/OS

IBM Enterprise COBOL for z/OS and OS/390 Enterprise COBOL

IBM Enterprise PL/I for z/OS and OS/390 Enterprise PL/I

IBM High Level Assembler for MVS™ & VM &

VSE

High Level Assembler

IBM IMS Advanced ACB Generator IMS Advanced ACB Generator

IBM IMS Batch Backout Manager IMS Batch Backout Manager

IBM IMS Batch Terminal Simulator IMS Batch Terminal Simulator

IBM IMS Buffer Pool Analyzer IMS Buffer Pool Analyzer

IBM IMS Command Control Facility for z/OS IMS Command Control Facility

IBM IMS Connect for z/OS IMS Connect

© Copyright IBM Corp. 2002, 2005 xi

Table 1. Licensed Program Full Names and Short Names (continued)

Licensed program full name Licensed program short name

IBM IMS Connector for Java™ IMS Connector for Java

IBM IMS Database Control Suite IMS Database Control Suite

IBM IMS Database Recovery Facility for z/OS IMS Database Recovery Facility

IBM IMS Database Repair Facility IMS Database Repair Facility

IBM IMS DataPropagator™ for z/OS IMS DataPropagator

IBM IMS DEDB Fast Recovery IMS DEDB Fast Recovery

IBM IMS Extended Terminal Option Support IMS ETO Support

IBM IMS Fast Path Basic Tools IMS Fast Path Basic Tools

IBM IMS Fast Path Online Tools IMS Fast Path Online Tools

IBM IMS Hardware Data

Compression-Extended

IMS Hardware Data Compression-Extended

IBM IMS High Availability Large Database

(HALDB) Conversion Aid for z/OS

IBM IMS HALDB Conversion Aid

IBM IMS High Performance Change

Accumulation Utility for z/OS

IMS High Performance Change Accumulation

Utility

IBM IMS High Performance Load for z/OS IMS HP Load

IBM IMS High Performance Pointer Checker

for OS/390

IMS HP Pointer Checker

IBM IMS High Performance Prefix Resolution

for z/OS

IMS HP Prefix Resolution

IBM z/OS Language Environment Language Environment

IBM Tivoli® NetView® for z/OS Tivoli NetView for z/OS

IBM WebSphere® Application Server for z/OS

and OS/390

WebSphere Application Server for z/OS

IBM WebSphere MQ for z/OS WebSphere MQ

IBM WebSphere Studio Application Developer

Integration Edition

WebSphere Studio

IBM z/OS z/OS

IBM z/OS C/C++ C/C++

How to Read Syntax Diagrams

The following rules apply to the syntax diagrams that are used in this information:

v Read the syntax diagrams from left to right, from top to bottom, following the path

of the line. The following conventions are used:

– The >>--- symbol indicates the beginning of a syntax diagram.

– The ---> symbol indicates that the syntax diagram is continued on the next

line.

– The >--- symbol indicates that a syntax diagram is continued from the

previous line.

– The --->< symbol indicates the end of a syntax diagram.

v Required items appear on the horizontal line (the main path).

xii Common Service Layer Guide and Reference

�� required_item ��

v Optional items appear below the main path.

�� required_item

optional_item
 ��

If an optional item appears above the main path, that item has no effect on the

execution of the syntax element and is used only for readability.

��
 optional_item

required_item

��

v If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main

path.

�� required_item required_choice1

required_choice2
 ��

If choosing one of the items is optional, the entire stack appears below the main

path.

�� required_item

optional_choice1

optional_choice2

 ��

If one of the items is the default, it appears above the main path, and the

remaining choices are shown below.

��

required_item
 default_choice

optional_choice

optional_choice

��

v An arrow returning to the left, above the main line, indicates an item that can be

repeated.

��

required_item

�

repeatable_item

��

If the repeat arrow contains a comma, you must separate repeated items with a

comma.

��

required_item

�

 ,

repeatable_item

��

A repeat arrow above a stack indicates that you can repeat the items in the

stack.

v Sometimes a diagram must be split into fragments. The syntax fragment is

shown separately from the main syntax diagram, but the contents of the fragment

should be read as if they are on the main path of the diagram.

About This Book xiii

�� required_item fragment-name ��

fragment-name:

 required_item

optional_item

v In IMS, a b symbol indicates one blank position.

v Keywords, and their minimum abbreviations if applicable, appear in uppercase.

They must be spelled exactly as shown. Variables appear in all lowercase italic

letters (for example, column-name). They represent user-supplied names or

values.

v Separate keywords and parameters by at least one space if no intervening

punctuation is shown in the diagram.

v Enter punctuation marks, parentheses, arithmetic operators, and other symbols,

exactly as shown in the diagram.

v Footnotes are shown by a number in parentheses, for example (1).

How to Send Your Comments

Your feedback is important in helping us provide the most accurate and highest

quality information. If you have any comments about this or any other IMS

information, you can take one of the following actions:

v Go to the IMS Library page at www.ibm.com/software/data/ims/library.html and

click the Library Feedback link, where you can enter and submit comments.

v Send your comments by e-mail to imspubs@us.ibm.com. Be sure to include the

title, the part number of the title, the version of IMS, and, if applicable, the

specific location of the text on which you are commenting (for example, a page

number in the PDF or a heading in the Information Center).

xiv Common Service Layer Guide and Reference

Summary of Changes

Changes to the Current Edition of This Book for Version 9

This edition, which is available in softcopy format only, includes technical and

editorial changes:

v Updated information on CSL system definition information and the z/OS program

properties table, described in “System Definition and Tailoring Considerations for

the CSL” on page 13.

v A new parameter, OPTION= is added to the CSLOMCMD request, described in

“CSLOMCMD Syntax” on page 55.

v A new input parameter, OPTION= is added to the CSLOMI API, described in

“CSLOMI Input= Parameter Syntax” on page 65.

v Updated information on shutting down the CSL RM, described in “Shutting Down

the CSL RM” on page 104.

v Updated information on the CSLRMQRY LIST= parameter, described in

“CSLRMQRY Parameters” on page 131.

v New information about how the CSL SCI views authorized and non-authorized

IMSplex members, described in “How SCI views authorized and non-authorized

IMSplex members” on page 170.

Changes to This Book for IMS Version 9

This edition contains information related to the following IMS Version 9 functional

line items and other quality line items:

v IMSplex Commands - see page 78.

v IMS Type-2 commands - see “A Simplified CSL Configuration” on page 3 and

other additions to Chapter 1, “Common Service Layer Introduction,” on page 1.

See also “CSL OM Command Security” on page 39.

v Significant changes to XML output samples have been made in Appendix A,

“CSL Operations Manager XML Output,” on page 205.

v The term “enhanced command” has been replaced with “type-2 command”.

This edition also includes new information about:

v The IMS Application Menu, from which you can start the TSO SPOC, among

others. Refer to the index for locations of this information.

v A new reason code (X'00000048') from the INIT OLCSTAT command regarding

CSLRMPRS, which is added to the description of the OUTPUT= parameter for

CSLRMPRS.

Library Changes for IMS Version 9

Changes to the IMS Library for IMS Version 9 include the addition of one title, a

change of one title, organizational changes, and a major terminology change.

Changes are indicated by a vertical bar (|) to the left of the changed text.

The IMS Version 9 information is now available in the Information Management

Software for z/OS Solutions Information Center, which is available at

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp. The Information

Management Software for z/OS Solutions Information Center provides a graphical

© Copyright IBM Corp. 2002, 2005 xv

|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|
|

user interface for centralized access to the product information for IMS, IMS Tools,

DB2 Universal Database (UDB) for z/OS, DB2 Tools, and DB2 Query Management

Facility (QMF™).

New and Revised Titles

The following list details the major changes to the IMS Version 9 library:

v IMS Version 9: IMS Connect Guide and Reference

The library includes new information: IMS Version 9: IMS Connect Guide and

Reference. This information is available in softcopy format only, as part of the

Information Management Software for z/OS Solutions Information Center, and in

PDF and BookManager formats.

IMS Version 9 provides an integrated IMS Connect function, which offers a

functional replacement for the IMS Connect tool (program number 5655-K52). In

this information, the term IMS Connect refers to the integrated IMS Connect

function that is part of IMS Version 9, unless otherwise indicated.

v The information formerly titled IMS Version 8: IMS Java User’s Guide is now

titled IMS Version 9: IMS Java Guide and Reference. This information is

available in softcopy format only, as part of the Information Management

Software for z/OS Solutions Information Center, and in PDF and BookManager

formats.

v To complement the IMS Version 9 library, a new book, An Introduction to IMS by

Dean H. Meltz, Rick Long, Mark Harrington, Robert Hain, and Geoff Nicholls

(ISBN # 0-13-185671-5), is available from IBM Press. Go to the IMS Web site at

www.ibm.com/ims for details.

Organizational Changes

Organization changes to the IMS Version 9 library include changes to:

v IMS Version 9: Customization Guide

v IMS Version 9: IMS Java Guide and Reference

v IMS Version 9: Messages and Codes, Volume 1

v IMS Version 9: Utilities Reference: System

A new appendix has been added to the IMS Version 9: Customization Guide that

describes the contents of the ADFSSMPL (also known as SDFSSMPL) data set.

The chapter titled ″DLIModel Utility″ has moved from IMS Version 9: IMS Java

Guide and Reference to IMS Version 9: Utilities Reference: System.

The DLIModel utility messages that were in IMS Version 9: IMS Java Guide and

Reference have moved to IMS Version 9: Messages and Codes, Volume 1.

Terminology Changes

IMS Version 9 introduces new terminology for IMS commands:

type-1 command

A command, generally preceded by a leading slash character, that can be

entered from any valid IMS command source. In IMS Version 8, these

commands were called classic commands.

type-2 command

A command that is entered only through the OM API. Type-2 commands

xvi Common Service Layer Guide and Reference

|
|

are more flexible than type-2 commands and can have a broader scope. In

IMS Version 8, these commands were called IMSplex commands or

enhanced commands.

Accessibility Enhancements

Accessibility features help users who have physical disabilities, such as restricted

mobility or limited vision, to use software products. The major accessibility features

in z/OS products, including IMS, enable users to:

v Use assistive technologies such as screen readers and screen magnifier

software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

User Assistive Technologies

Assistive technology products, such as screen readers, work in conjunction with the

IMS user interfaces. For information about how to use assistive technology to

access these IMS user interfaces, consult the documentation of the assistive

technology product.

Accessible Information

The IMS Version 9 product information is available online in the following accessible

formats:

v HTML, in which you can access the IMS Version 9 library. You can find the IMS

Version 9 library in the Information Management Software for z/OS Solutions

Information Center at

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp.

v ISPF help panels, in which you can access the online help for the IMS Version 9

ISPF applications.

You can use screen readers and other assistive technologies to access the IMS

Version 9 product information.

Keyboard Navigation of the User Interface

You can access the information center and IMS ISPF panel functions by using a

keyboard or keyboard shortcut keys.

You can find information about navigating the information center using a keyboard

in the information center home at

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp.

For information about navigating the IMS ISPF panels using TSO/E or ISPF, refer to

the z/OS V1R1.0 TSO/E Primer, the z/OS V1R5.0 TSO/E User’s Guide, and the

z/OS V1R5.0 ISPF User’s Guide, Volume 1. These guides describe how to navigate

each interface, including the use of keyboard shortcuts or function keys (PF keys).

Each guide includes the default settings for the PF keys and explains how to modify

their functions.

Summary of Changes xvii

xviii Common Service Layer Guide and Reference

Chapter 1. Common Service Layer Introduction

These topics provide an introduction to the concepts of the IMS Common Service

Layer.

v “What Is The CSL?”

v “The CSL in An IMSplex”

v “A Simplified CSL Configuration” on page 3

v “CSL Managers” on page 3

v “Using a Single Point of Control (SPOC) Program in CSL” on page 5

v “CSL Configuration Examples” on page 7

What Is The CSL?

The IMS Common Service Layer (CSL) is a collection of IMS manager address

spaces that provide the infrastructure needed for systems management tasks. The

CSL address spaces include Operations Manager (OM), Resource Manager (RM),

and Structured Call Interface (SCI). They are described in “CSL Managers” on page

3.

The CSL is built on the IMS Base Primitive Environment (BPE) layer. Therefore, all

commands, messages, abends, configurations, and user exit interfaces that apply to

BPE also apply to all CSL manager address spaces.

The IMS CSL provides the following:

v Improved systems management

v A single system image

v Ease of use through a single point of control

v Shared resources across all IMS systems

The role of the CSL is described in “The CSL in An IMSplex.” If you do not use

shared queues or sysplex technology, you can take advantage of a simplified CSL

configuration to issue type-2 commands through the CSL OM. This is described in

“A Simplified CSL Configuration” on page 3.

The CSL in An IMSplex

The IMS CSL reduces the complexity of managing multiple IMS systems by

providing you with a single-image perspective in an IMSplex. An IMSplex is one or

more IMS subsystems (control, manager, or server) that can work together as a

unit. Typically, but not always, these subsystems:

v Share either databases or resources or message queues (or any combination)

v Run in a z/OS sysplex environment

v Include an IMS CSL

Within an IMSplex, you can now manage multiple IMS subsystems as if they were

one system. For example, instead of entering commands on each IMS system

during local online change, you can enter commands from one single point of

control, and the commands will run on each IMS system in the IMSplex. An IMSplex

can also exist in a non-sysplex environment. Use of the CSL is optional.

An IMSplex component is an IMS-defined entity that typically runs in its own

address space; it manages resources, manages operations, or facilitates

© Copyright IBM Corp. 2002, 2005 1

|

|
|
|
|

communications between other IMS-defined entities. After the necessary started

procedures for these components are initialized, they become IMSplex members.

Examples of IMSplex components are:

v IMS subsystems (DB/DC, DBCTL, DCCTL)

v Resource Manager

v Operations Manager

v Structured Call Interface

v A DLIBATCH or DBBBATCH region

A DLIBATCH or DBBBATCH region is considered a special type of IMSplex

component in that it does not interact with RMs and OMs.

A typical IMSplex environment including a CSL is shown in Figure 1. There are

three separate operating system (OS) images. Each OS has an IMS control region

and an SCI. OS1, in addition, has an OM and an RM. All three OS images share a

coupling facility, which has database sharing structures, a message queue

structure, and a resource structure.

The CSL is composed of three IMS address spaces:

v OM

v RM

v SCI

The address spaces that can participate in an IMSplex are:

v IMS control region address spaces

v IMS CSL manager address spaces (OM, RM, SCI)

v IMS server address spaces (Common Queue Server)

Figure 1. IMSplex Environment Including a CSL

2 Common Service Layer Guide and Reference

v Non-IMS address spaces

The IMSIDs of IMSs in the IMSplex must be unique.

A Simplified CSL Configuration

If your IMS configuration does not require RM services, you can still use OM and

SCI to take advantage of type-2 IMS commands. Prior to IMS Version 9, type-2

commands required an RM. The commands could only be issued using the TSO

SPOC, the IMS Control Center, or any user-written or vendor-written automation

program that used the OM API. You can now issue type-2 commands using OM in

a CSL configured without an RM.

The IMS Application Menu provides a common interface to enable you to start

applications such as TSO SPOC, Syntax Checker, IVP, and more. For more

information about the IMS Application Menu, see IMS Version 9: Installation

Volume 1: Installation Verification.

For more information on type-2 commands, see the IMS Version 9: Command

Reference.

CSL Managers

The CSL is a key component in the evolving architecture of IMS. Using the CSL in

an IMSplex provides you with the infrastructure for improved systems management.

The CSL address spaces are also referred to as CSL managers.

CSL Operations Manager

OM helps you control the operations of all IMS systems in an IMSplex. OM receives

processing control when an OM request (an IMS command, for example) is

received by the OM application programming interface (API). All commands and

responses to those commands must come through the OM API. You can access

this API through a Single Point of Control (SPOC) application, such as the TSO

SPOC, REXX SPOC API, or a SPOC that you develop.

The OM API is described in “CSLOMI: API Request” on page 63. The REXX SPOC

is described in Appendix B, “REXX SPOC API and the CSL,” on page 221.

In an IMSplex, OM:

v Routes IMS commands to IMSplex members registered for the command.

v Consolidates command responses from individual IMSplex members into a single

response to present to the command originator.

v Provides a programming API for IMS commands for automation.

v Provides a programming interface to support any command processing client.

v Provides user exits for input command and output response modification and

security customization.

To use OM functions, an IMSplex must include at least one OM. There can be one

or more OM on each z/OS image. Any OM can process work from a z/OS image

within an IMSplex. Configuration examples are provided in “CSL Configuration

Examples” on page 7.

For more information on OM, see Chapter 3, “CSL Operations Manager,” on page

31.

Chapter 1. Common Service Layer Introduction 3

|

|
|
|
|
|
|

|
|
|
|

|
|

CSL Resource Manager

RM helps you manage resources that are shared by multiple IMS systems in an

IMSplex. RM provides the infrastructure for managing global resource information

and coordinating IMSplex-wide processes. RM provides the following functions to

an IMSplex:

v Maintains global resource information in a resource structure, which is a coupling

facility list structure that all RMs in the IMSplex can access.

v Ensures resource consistency so that a resource defined as a transaction, lterm,

or msname is defined as the same resource type for all IMSs in the IMSplex.

v Supports resource services.

v Supports client services.

v Uses the Common Queue Server (CQS) to maintain global resource information.

v Coordinates IMSplex-wide processes (such as global online change).

To use RM functions, an IMSplex must include at least one RM, and each IMS must

specify that RM is to be used. You can configure your IMS system without an RM,

but with OM and SCI, to take advantage of type-2 commands. Configuration

examples are provided in “CSL Configuration Examples” on page 7. For more

information on RM, see Chapter 4, “CSL Resource Manager,” on page 97.

CSL Structured Call Interface

This SCI allows IMSplex members to communicate with one another.

Communication between IMSplex members can occur within a single z/OS image or

among multiple z/OS images. The individual IMSplex members do not need to know

where the other members reside or what communication interface to use.

SCI provides the following functions to an IMSplex:

v Routes messages and requests within an IMSplex.

v Registers and deregisters IMSplex members.

v Notifies IMSplex members when a member joins or leaves the IMSplex.

v Provides security authentication of members when they join the IMSplex.

v Provides a single call interface to isolate the client and server from the underlying

communications technology.

Any IMSplex member that requires SCI services must have an SCI on its z/OS

image. There can be at most one SCI address space per IMSplex on each z/OS

image. Configuration examples are provided in “CSL Configuration Examples” on

page 7.

Note: DBRC RECON Loss Notification enhancement uses SCI, but not RM or OM.

Although it is recommended that you initialize each CSL manager address

space in an IMSplex, you can bring up an SCI address space without

requiring the other CSL manager address spaces for DBRC RECON Loss

Notification.

For more information on SCI and its operations, see Chapter 5, “CSL Structured

Call Interface,” on page 149.

4 Common Service Layer Guide and Reference

|
|
|
|
|

Using a Single Point of Control (SPOC) Program in CSL

An IMS single point of control (SPOC) is a program with which you can manage

operations of all IMS systems within an IMSplex. A SPOC communicates with one

OM address space; OM then communicates with all of the other IMS address

spaces in the IMSplex, through SCI, as required for operations.

A SPOC provides the following functions to an IMSplex:

v It allows you to submit commands to all IMSs in the IMSplex from a single

console.

v It displays consolidated command responses from multiple IMS address spaces.

v It sends a message to an IMS terminal, connected to any IMS control region in

the IMSplex, by issuing the IMS /BROADCAST command.

Figure 2 shows a SPOC application in an IMSplex. The IMSplex in this example

has three identical OS images: each has an IMS control region, an IMS CQS

address space, and an SCI, OM, and RM. All three OS images share a coupling

facility, which includes database sharing structures, a message queue structure,

and a resource structure. the IMSplex configuration also includes shared databases

and RECON data sets.

Figure 2. SPOC Application in an IMSplex

Chapter 1. Common Service Layer Introduction 5

With a SPOC, you can issue commands to all members of an IMSplex at once.

There can be more than one type of SPOC in an IMSplex, and there can be any

number of SPOCs active, including:

TSO SPOC

An IMS system management application comprised of an ISPF panel

interface on a TSO terminal. It performs SPOC functions in an IMSplex. You

can start the TSO SPOC using the IMS Application Menu. For more

information about using the IMS Application Menu, see IMS Version 9:

Installation Volume 1: Installation Verification. For more information on

issuing commands with the TSO SPOC, see IMS Version 9: Operations

Guide.

IMS Control Center

An IMS system management application with a graphical user interface

(GUI). It also performs SPOC functions in an IMSplex.

REXX program using the REXX SPOC API

An application programming interface that allows automation programs to

perform SPOC functions. See Appendix B, “REXX SPOC API and the CSL,”

on page 221 for more information.

Vendor- or user-written SPOC

A program written to use or access the OM API to perform SPOC functions.

Figure 3 shows an IMSplex environment with multiple SPOC users. The IMSplex

environment includes four IMS control regions, each having its own SCI, and one

OM. The multiple SPOC users include two SPOC TSO/ISPF applications, a REXX

SPOC API, and a vendor-written SPOC program. Each SPOC can access the

IMSplex environment.

A SPOC is optional in an IMSplex. It uses the OM API macros to communicate with

the IMSplex; however, you can write your own SPOC, and you can continue to use

Figure 3. Multiple SPOC Users in an IMSplex

6 Common Service Layer Guide and Reference

|
|
|
|
|
|
|

your existing automated procedures. In addition, the existing command interfaces

for the WTOR, MTO, and E-MCS console are still supported for type-1 commands

only.

Note: Type-2 commands can only be issued from the TSO SPOC, the IMS Control

Center, or other user- or vendor-written automation programs that use the

OM API.

Related Reading: For more information about the TSO SPOC, see IMS Version 9:

Operations Guide.

CSL Configuration Examples

When an IMS control region (DL/I, DBRC, dependent regions) requires the use of

the CSL, SCI, OM, and RM are all required. However, different configurations are

possible for the use of the CSL in an IMSplex. The basic configuration requirements

for the CSL are:

Operations Manager

At least one OM must be available in the IMSplex. You can define

additional OMs in the IMSplex for performance and availability

enhancements.

Resource Manager

If any IMS in the IMSplex requires RM services, at least one RM must be

available when the IMSplex is initialized. You can define additional RMs in

the IMSplex for performance and availability enhancements if a resource

structure is used. However, only one RM can be started in an IMSplex if a

resource structure is not used.

Structured Call Interface

One SCI is required on each operating system image where an IMSplex

member is running. Only one SCI is allowed on each operating system

image for a given IMSplex.

Figure 4 on page 8 illustrates a sample IMSplex configuration that includes the

CSL, a SPOC, and automated procedures.

v The OS image includes addresses spaces for OM, SCI, RM, an IMS control

region, and IMS CQS.

v The OS image shares a coupling facility and databases.

v A SPOC application, an automation application, a master terminal, and an end

user terminal all access the OS image.

Chapter 1. Common Service Layer Introduction 7

|
|
|

|
|
|
|
|

To obtain the fastest communication, define an OM and RM on each z/OS image;

an IMSplex component can communicate more quickly with an OM or RM on the

same z/OS image as that component rather than an OM or RM on a different z/OS

image. However, this configuration also increases the number of address spaces on

each z/OS image, which can create a more complex operating environment.

Note: If only one RM and only one OM are defined across an IMSplex, there is no

backup to perform that manager’s work in case of failure.

Recommendation: Define more than one RM, OM, and SCI across an IMSplex.

Figure 5 on page 9 illustrates the minimum configuration possible for the CSL in an

IMSplex. Each OS image has an IMS control region and an SCI; in addition, the

first OS image also has an OM and RM.

Figure 4. Sample IMSplex Configuration with CSL

8 Common Service Layer Guide and Reference

In Figure 5, each z/OS image has a separate SCI since each has a distinct IMS

control region. OM and RM can reside on one z/OS image and still be used by

other images in the IMSplex.

Figure 6 on page 10 illustrates a more complex configuration having multiple

versions of IMS within the IMSplex.

v OS1 has IMS Version 9 control regions and is the only OS image running an OM

v OS2 has IMS Version 8 control regions and an RM

v OS3 has an IMS Version 7 control region and an IMS Version 8 DBRC batch

region

All three OS images share the coupling facility. Within the coupling facility is a

resource structure. Therefore, an additional RM could be defined in another OS

image. OM, RM and SCI are supported in an IMS Version 8 and IMS Version 9

system, but not an IMS Version 7 system.

Figure 5. IMSplex Minimum CSL Configuration

Chapter 1. Common Service Layer Introduction 9

|
|

|

|

|
|

|
|
|
|
|

Figure 7 illustrates the configuration of the Common Service Layer in a DBCTL

environment. Here, three OS images each have an IMS DBCTL control region. All

have an SCI and an OM. Only one RM is allowed in the IMSplex, here in OS1,

because no resource structure is defined; however, it is recommended that you

define a resource structure for DBCTL.

Figure 6. IMSplex Mixed Version CSL Configuration

Figure 7. IMSplex DBCTL CSL Configuration

10 Common Service Layer Guide and Reference

|

|
|
|
|

In Figure 7 on page 10, an OM is defined in each OS image to enhance overall

system performance. If you do not use global online change, neither RM services

nor an RM address space is required. In such a configuration, the CSL includes SCI

and OM.

In other examples, Figure 8 and Figure 9 on page 12 illustrate what a shared

queues IMSplex environment looks like, both with and without a CSL.

In Figure 8, three OS images are each defined with an IMS control region and IMS

CQS. Each is associated with a Master Terminal Operator (MTO) console. All three

OS images share a coupling facility that includes database sharing structures and a

message queue structure. No CSL manager address spaces are defined.

 In Figure 9 on page 12, three OS images are defined. Each is identical, having an

IMS control region, IMS CQS, and all CSL managers (SCI, OM, and RM). The three

OS images share the coupling facility, which includes database sharing structures, a

message queue structure, and a resource structure. A SPOC application can

access any of the OS images.

Figure 8. Shared Queues in an IMSplex without a CSL

Chapter 1. Common Service Layer Introduction 11

|
|
|
|

In a single system IMSplex environment, each address space of the Common

Service Layer is defined in a single OS image. This simple configuration is shown in

Figure 10. The OS image is defined with multiple IMS control regions, and one SCI,

RM, and OM.

Figure 9. Shared Queues in an IMSplex Environment with a CSL

Figure 10. IMSplex Single System CSL Configuration

12 Common Service Layer Guide and Reference

Chapter 2. Using The Common Service Layer in an IMSplex

In these topics, the basic operations of an IMS CSL in an IMSplex are described:

v “System Definition and Tailoring Considerations for the CSL”

v “General Guidelines for Writing CSL Requests” on page 16

v “Considerations for Writing Clients for the CSL” on page 21

v “Sending Commands to the IMSplex” on page 23

v “Querying Statistics from the IMSplex Using CSLZQRY” on page 24

v “Shutting Down the CSL” on page 26

v “Using the z/OS Automatic Restart Manager with the CSL” on page 29

System Definition and Tailoring Considerations for the CSL

Use of the CSL is optional. To use the CSL, the system programmer must:

v Ensure that the z/OS program properties table includes an entry for BPEINI00.

v Define or change the procedures required to start and stop an IMSplex

Each of these tasks is described in this topic. Definition and tailoring information

specific to each CSL manager is provided in these topics:

v “CSL OM Definition and Tailoring” on page 31

v “CSL RM Definition and Tailoring” on page 99

v “CSL SCI Definition and Tailoring” on page 149

For additional information on IMS system definition and tailoring, refer to IMS

Version 9: Installation Volume 2: System Definition and Tailoring.

Updating the z/OS Program Properties Table for the CSL

The system programmer must ensure that an entry exists in the z/OS program

properties table (PPT) for BPEINI00. An entry for BPEINI00 is automatically added

to the PPT; however, if you have removed the default entry for BPEINI00, you must

add it using the procedure below. The steps to add the entry are:

1. Edit the SCHEDxx member of the SYS1.PARMLIB data set.

2. Add the PPT entry PGMNAME(BPEINI00) to the SCHEDxx member, as shown in

Figure 11:

Note: You can also use BPEINI00 to start CQS with the other CSL

components. CQSINIT0 is still supported, but it is not needed.

3. Either re-IPL the z/OS system or issue the z/OS SET SCH= command.

PPT PGMNAME(BPEINI00) /* PROGRAM NAME BPEINI00 */

 CANCEL /* PROGRAM CAN BE CANCELLED (DEFAULT) */

 KEY(7) /* PROTECT KEY ASSIGNED IS 7 */

 NOSWAP /* PROGRAM IS NOT-SWAPPABLE */

 NOPRIV /* PROGRAM NOT PRIVILEGED (DEFAULT) */

 SYST /* PROGRAM IS A SYSTEM TASK */

 DSI /* REQUIRES DATA SET INTEGRITY (DEFAULT) */

 PASS /* PASSWORD PROTECTION ACTIVE (DEFAULT) */

 AFF(NONE) /* NO CPU AFFINITY (DEFAULT) */

 NOPREF /* NO PREFERRED STORAGE FRAMES (NODEFAULT) */

Figure 11. SCHEDxx member

© Copyright IBM Corp. 2002, 2005 13

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|

|
|
|

|
|

|

For more information about updating the z/OS program properties table and editing

the SCHEDxx member, see z/OS MVS Initialization and Tuning Reference.

Defining PROCLIB Members for the CSL

This topic describes the IMSplex components and the procedure library (PROCLIB)

members that apply to the CSL.

CQS PROCLIB Members

The IMS Common Queue Server (CQS) supports two PROCLIB members that are

applicable to the CSL. CQS also supports the resource structure, which contains

global resource information maintained by RM.

Two PROCLIB members apply to the CSL:

CQSIPxxx

Use the CQSIPxxx PROCLIB member to specify CQS initialization

parameters and to initialize the CQS address space. The IMSPLEX() and

NAME= parameters define the IMSplex name.

CQSSGxxx

Use the CQSSGxxx PROCLIB member to define global CQS parameters

related to one or more coupling facility structures. The STRUCTURE()

parameter defines a queue structure. The RSRCSTRUCTURE() parameter

defines a resource structure. You must provide at least one STRUCTURE

or RSRCSTRUCTURE definition. Both parameters can be defined to one

CQS.

For complete information on these procedures and their parameters, see IMS

Version 9: Common Queue Server Guide and Reference.

IMS PROCLIB Members

The IMS control region supports the PROCLIB members listed here, which are

applicable to the CSL. For complete information on the IMS PROCLIB members

that must be initialized for the CSL, see IMS Version 9: Installation Volume 2:

System Definition and Tailoring.

DFSDCxxx

Use the IMS DC execution parameters PROCLIB member to define the status

recovery mode of DC resources.

DFSVSMxxx

Use the OCMD= and CSLT= parameters to activate traces related to IMSplex

activity.

DFSPBxxx

Use the CSLG= parameter to specify a 3-character suffix for the DFSCGxxx

PROCLIB member.

DFSCGxxx

Use this PROCLIB member to specify parameters related to the CSL, OM, and

RM. The suffix is specified on the CSLG= parameter. All IMSplex members that

are in the same IMSplex group sharing databases, message queues, or both,

must specify the same values except OLC=, which specifies either LOCAL or

GLOBAL. The parameters are:

v CMDSEC=

v IMSPLEX=

v LEOPT=

v NORSCCC=

14 Common Service Layer Guide and Reference

|
|
|

v OLC=

v OLCSTAT=

v RMENV=

v OMPROC=

v SCIPROC=

Recommendation: You should specify OM command security instead of IMS

security. See IMS Version 9: Installation Volume 2: System Definition and

Tailoring for more information on IMS security. Refer to “CSL OM Command

Security” on page 39 for more information on OM command security.

Base Primitive Environment PROCLIB Members

All CSL components use the Base Primitive Environment (BPE). There are two BPE

PROCLIB members that are applicable to each CSL component address space:

v BPE configuration PROCLIB member - contains statements that configure the

BPE execution environment parameters.

v BPE user exit PROCLIB member - associates user exit points with one or more

user exit modules.

Each CSL address space can have its own BPE configuration and user exit

definition members, or they can share common members. For complete information

on BPE PROCLIB members, see IMS Version 9: Base Primitive Environment Guide

and Reference. Information on BPE considerations for each CSL manager is

provided in these topics:

v “BPE Considerations for the CSL OM” on page 34

v “BPE Considerations for the CSL RM” on page 103

v “BPE Considerations for the CSL SCI” on page 151

CSL Manager PROCLIB Members

Each CSL manager has a separate initialization PROCLIB member that must be

defined. See:

v “CSL OM Initialization Parameters PROCLIB Member” on page 35

v “CSL RM Initialization Parameters PROCLIB Member” on page 101

v “CSL SCI Initialization Parameters PROCLIB Member” on page 152

Global Online Change in a CSL

Global online change is an IMS function that uses the RM component of CSL to

coordinate online change of resources across an IMSplex. This topic provides basic

information about the differences between global online change and local online

change. The CSL RM coordinates global online change activity, and that activity is

described in more detail in “Enabling the Resource Manager for Global Online

Change” on page 16.

For additional information on global online change, see “Making Global Online

Changes in an IMSplex” in IMS Version 9: Operations Guide.

Comparing Global and Local Online Change

In an IMSplex, global online change allows you to perform online change to

resources across the IMSplex. This is different than local online change, which

performs online change to a local IMS system. To perform local online change in an

IMSplex, you must manually coordinate local online change commands on the IMS

systems. You issue separate commands to each IMS in the sysplex to prepare for,

commit, and abort changes. In this example, changes can be committed on some

IMSs in the sysplex, but not others. RM can optionally coordinate all phases of

Chapter 2. Using The Common Service Layer in an IMSplex 15

|

|

|

|
|
|
|
|
|

|
|

online change to achieve global online change on resources across an IMSplex.

The initial steps taken for local online change (for example, an ACBGEN followed

by the online change copy utility, OLCUTL) are still required for global online

change.

To enable global online change for an IMSplex, the system programmer must:

v Define the global OLCSTAT data set.

v Remove local MODSTAT definitions.

v Define the OLCSTAT data set name in the DFSCGxxx PROCLIB member.

For complete information on the tasks associated with enabling global online

change, see IMS Version 9: Administration Guide: Database Manager. For

information on the utilities associated with global online change, see IMS Version 9:

Utilities Reference: System.

You can coordinate global online changes for the following resources:

v Databases

v Database directories

v MFS formats

v Programs

v Program directories

v Security matrices

v Transactions

Enabling the Resource Manager for Global Online Change

Because RM coordinates the global online change activity, it must be started and

active in the IMSplex. RM can be optionally defined with a resource structure. If it

is, global online change uses this resource structure to save IMSplex process

status; IMS uses it to perform consistency checking between OLCSTAT and the

online change libraries (ACBLIB, FMTLIB, and MODBLKS).

Using a resource structure provides more recovery capability during online change

in the event of failure; however, it is not required for global online change.

If no resource structure is defined, the IMSplex can contain only one RM. In this

example, no consistency checking is performed between OLCSTAT and the online

change libraries, and IMS does not ensure that all IMSs in the IMSplex use the

same OLCSTAT data set name.

For more information about the role of RM, refer to Chapter 4, “CSL Resource

Manager,” on page 97.

General Guidelines for Writing CSL Requests

The following topics document general guidelines for writing OM, RM, and SCI

requests for the CSL managers, including:

v “Using an ECB with CSL Requests”

v “CSL Manager Requests” on page 17

v “Releasing Storage with CSLSCBFR” on page 19

v “Environmental Requirements for SCI Requests” on page 19

Using an ECB with CSL Requests

Most CSL requests allow an ECB to be specified. The ECB= parameter is optional

and specifies the address of the z/OS ECB. When a CSL request completes, the

16 Common Service Layer Guide and Reference

|

ECB specified in on the ECB= parameter is posted. If the parameter is not included,

the requesting module does not receive control back from SCI until the request has

completed.

If an ECB is specified, the invoker of the request must issue a WAIT (or equivalent)

after receiving control from the request, before using or examining any data

returned by this request (including the RETCODE and RSNCODE fields).

CSL Manager Requests

Table 2 lists all of the CSL manager requests, where you can find that information, a

brief description of their use, and the location of their return and reason codes, if

applicable.

 Table 2. A List of All of the CSL Manager Requests

Request

Name Described here Use

Return and Reason

Codes

CSLOMCMD “CSLOMCMD:

Command Request” on

page 55

Used by an automated

operator program client

to send commands.

“CSLOMCMD Return

and Reason Codes” on

page 59

CSLOMI “CSLOMI: API Request”

on page 63

Used by z/OS

automated operator

client to issue IMS

commands to an OM.

“CSLOMI Return and

Reason Codes” on

page 69

CSLOMQRY “CSLOMQRY: Query

Request” on page 74

Used by an automated

operator client to

request OM-specific

information

“CSLOMQRY Return

and Reason Codes” on

page 78

CSLOMBLD “CSLOMBLD:

Command Registration

Build” on page 79

Used to build the

command list that is

passed to OM on the

CSLOMREG request.

Not applicable.

CSLOMDRG “CSLOMDRG:

Command

Deregistration Request”

on page 81

Used by command

processing clients to tell

OM that it no longer

wants to process

commands.

“CSLOMDRG Return

and Reason Codes” on

page 82

CSLOMOUT “CSLOMOUT:

Unsolicited Output

Request” on page 82

Used by a command

processing client to

send a message not

directly in response to a

command.

“CSLOMOUT Return

and Reason Codes” on

page 84

CSLOMRDY “CSLOMRDY: Ready

Request” on page 84

Used by a command

processing client to

notify OM that it is

ready to process

commands.

“CSLOMRDY Return

and Reason Codes” on

page 85

CSLOMREG “CSLOMREG:

Command Registration

Request” on page 85

Used by a command

processing client to

register commands with

OM.

“CLSOMREG Return

and Reason Codes” on

page 87

CSLOMRSP “CSLOMRSP:

Command Response

Request” on page 88

Used by a command

processing client to

respond to a command.

“CSLOMRSP Return

and Reason Codes” on

page 91

Chapter 2. Using The Common Service Layer in an IMSplex 17

Table 2. A List of All of the CSL Manager Requests (continued)

Request

Name Described here Use

Return and Reason

Codes

CSLRMDEL “CSLRMDEL: Delete

Resources” on page

113

Used to delete one or

more uniquely named

resources on a

resource structure.

“CSLRMDEL Return

and Reason Codes” on

page 116

CSLRMDRG “CSLRMDRG:

Deregister Clients” on

page 117

Used by a client to

communicate that it no

longer wants to process

resource requests from

RM.

Not applicable.

CSLRMPRI “CSLRMPRI: Process

Initiate” on page 118

Used by a client to

initiate a process across

an IMSplex.

“CSLRMPRI Return and

Reason Codes” on

page 120

CSLRMPRR “CSLRMPRR: Process

Respond” on page 121

Used by a client to

respond to a step in an

IMSplex-wide process.

“CSLRMPRR Return

and Reason Codes” on

page 123

CSLRMPRS “CSLRMPRS: Process

Step” on page 123

Used by a client to

perform a step in a

process.

“CSLRMPRS Return

and Reason Codes” on

page 127

CSLRMPRT “CSLRMPRT: Process

Terminate” on page 129

Used by a client to

terminate an

IMSplex-wide process.

“CSLRMPRT Return

and Reason Codes” on

page 131

CSLRMQRY “CSLRMQRY: Query

Resources” on page

131

Used by a client to

query one or more

uniquely named

resources on a

resource structure.

“CSLRMQRY Return

and Reason Codes” on

page 135

CSLRMREG “CSLRMREG: Register

Clients” on page 136

Used to register a client

and, optionally, the

client’s resource types

and associated name

types, to RM.

“CSLRMREG Return

and Reason Codes” on

page 139

CSLRMUPD “CSLRMUPD: Update

Resources” on page

140

Used to create a

resource or update a

previously created

resource.

“CSLRMUPD Return

and Reason Codes” on

page 143

CSLSCBFR “CSLSCBFR: Buffer

Return Request” on

page 172

Used to release storage

that SCI allocated for

an IMSplex member.

“CSLSCBFR Return

and Reason Codes” on

page 173

CSLSCDRG “CSLSCDRG:

Deregistration Request”

on page 174

Used to break a

connection between an

IMSplex member and

SCI.

“CSLSCDRG Return

and Reason Codes” on

page 175

CSLSCMSG “CSLSCMSG: Send

Message Request” on

page 175

Used to send a

message to one or

more IMSplex

members.

“CSLSCMSG Return

and Reason Codes” on

page 181

CSLSCQRY “CSLSCQRY: Query

Request” on page 182

Used by IMSplex

member to obtain

information about other

members of an

IMSplex.

“CSLSCQRY Return

and Reason Codes” on

page 185

18 Common Service Layer Guide and Reference

Table 2. A List of All of the CSL Manager Requests (continued)

Request

Name Described here Use

Return and Reason

Codes

CSLSCQSC “CSLSCQSC: Quiesce

Request” on page 185

Used to tell SCI to stop

routing messages and

requests to the issuing

IMSplex member.

“CSLSCQSC Return

and Reason Codes” on

page 186

CSLSCRDY “CSLSCRDY: Ready

Request” on page 187

Used to enable an

IMSplex member to

receive messages and

requests.

“CSLSCRDY Return

and Reason Codes” on

page 188

CSLSCREG “CSLSCREG:

Registration Request”

on page 188

Used to create a

connection between an

IMSplex member and

SCI.

“CSLSCREG Return

and Reason Codes” on

page 193

CSLSCRQR “CSLSCRQR Request

Return Request” on

page 194

Used to return a

request to the IMSplex

member from which the

request originated.

“CSLSCRQR Return

and Reason Codes” on

page 196

CSLSCRQS “CSLSCRQS: Send

Request Request” on

page 197

Used to allow an

IMSplex member to

send a request to

another member in the

IMSplex.

“CSLSCRQS Return

and Reason Codes” on

page 202

Releasing Storage with CSLSCBFR

The CSLSCBFR request, which is described more fully in “CSLSCBFR: Buffer

Return Request” on page 172, is used to release storage that is obtained during the

processing of OM and RM requests. You must issue this request to release storage,

which would otherwise accumulate. If the storage is not released, an abend could

occur.

Environmental Requirements for SCI Requests

For SCI requests, the environmental requirements depend on the SCI interface

assigned to the client.

For clients using the authorized SCI interface, refer to Table 3:

 Table 3. Environment for SCI Requests Using the Authorized Interface

Environmental Characteristic Requirement

Authorization Supervisor state and PSW key 0-7 (PSW key

must match the PSW key when the

CSLSCREG request was issued)

Dispatchable unit mode Task

Cross memory mode Any, however, PASN must equal the primary

address space where the CSLSCREG

request was issued

AMODE 31

ASC Mode Primary

Home address space Any

Locks No locks held

Chapter 2. Using The Common Service Layer in an IMSplex 19

Table 3. Environment for SCI Requests Using the Authorized Interface (continued)

Environmental Characteristic Requirement

Interrupt status Enabled for interrupts

Control parameters In primary address space

For clients using the non-authorized SCI interface, refer to Table 4:

 Table 4. Environment for SCI Requests Using the Non-Authorized Interface

Environmental Characteristic Requirement

Authorization Problem state or PSW key 8 (PSW key must

match the PSW key when the CSLSCREG

request was issued)

Dispatchable unit mode Task

Cross memory mode None (PASN=SASN=HASN)

AMODE 31

ASC Mode Primary

Home address space Address space where CSLSCREG was

issued

Locks No locks held

Interrupt status Enabled for interrupts

Control parameters In primary address space

The environmental requirements for the SCI register and deregister requests

(CSLSCREG and CSLSCDRG) are different from all of the other SCI requests. Authorized

clients must issue CSLSCREG and CSLSCDRG requests in the environment shown in

Table 5:

 Table 5. Environment for CSLSCREG and CSLSCDRG Requests Using the Authorized

Interface

Environmental Characteristic Requirement

Authorization Supervisor state and PSW key 0-7

Dispatchable unit mode Task

Cross memory mode None (PASN=SASN=HASN)

AMODE 31

ASC Mode Primary

Locks No locks held

Interrupt status Enabled for interrupts

Control parameters In primary address space

Non-authorized clients must issue CSLSCREG and CSLSCDRG requests in the

environment described in Table 6:

 Table 6. Environment for CSLSCREG and CSLSCDRG Requests Using the Non-Authorized

Interface

Environmental Characteristic Requirement

Authorization Problem state or PSW key 8

20 Common Service Layer Guide and Reference

Table 6. Environment for CSLSCREG and CSLSCDRG Requests Using the Non-Authorized

Interface (continued)

Environmental Characteristic Requirement

Dispatchable unit mode Task

Cross memory mode None (PASN=SASN=HASN)

AMODE 31

ASC Mode Primary

Locks No locks held

Interrupt status Enabled for interrupts

Control parameters In primary address space

Considerations for Writing Clients for the CSL

This topic describes what you need to consider when you plan to write OM, RM, or

SCI clients for your installation. A high-level sequence is provided, beginning with

“Planning Considerations for Writing Clients for the CSL.” The sequence is provided

as an example only; your installation’s planning and implementation of the CSL

might vary.

Planning Considerations for Writing Clients for the CSL

Planning tasks are decisions that you must make to determine how you will use the

CSL managers. These decisions include:

v What authorization level to use

You must decide whether your program needs to run authorized (supervisor

state, PSW key 0-7), or non-authorized (problem state, PSW key 8). SCI

initializes the appropriate environment based on your program’s state and PSW

key when it registers with SCI.

Note: A non-authorized client cannot register with RM, issue RM requests,

register commands with OM, or process requests issued using

CSLSCRQS.

v Whether to use SCI exit routines

You must decide specifically whether to use the SCI Input and Notify exit

routines. An OM command processing client, for example, must have the SCI

Input exit to process OM directives; it must have the SCI Notify exit to be notified

when new OMs join the IMSplex, so the OM command processing client can

register to those OMs.

v TCB Association

SCI registration (with the CSLSCREG request) enables an IMSplex member to

be associated with a specific different TCB. The authorization level you use must

also be considered regarding TCB association.

v Whether to use RM services and OM services

You can choose to manage your own global resources. However, if you want to

access IMS global resources, you must code an RM client.

If you plan to develop your own command set and your own command

processing client (that would coordinate its own command registration and

security), you can write an OM command processing client. If you plan to

develop your own SPOC or AOP to enter your own commands, you can write an

Chapter 2. Using The Common Service Layer in an IMSplex 21

|
|
|

OM AOP client. OM’s role is to transport commands throughout an IMSplex and

to consolidate those command responses, in XML tags, for a SPOC or AOP.

v Whether to use message or request protocol when issuing requests

Use message protocol either when you do not need a synchronous response, or

when you want an asynchronous response. IMSplex command responses that

are sent with message protocol are sent asynchronously.

Registering Clients to CSL Managers

To use any of the CSL managers, you must first complete registration steps. OM

and RM clients must register with the SCI. The following topics describe SCI

registration and how OM and RM clients register with the SCI. It also describes how

to set SCI to a ready state, and the sequence in which CSL requests must be

issued:

v “Registering to SCI”

v “Registering an OM Client”

v “Registering an RM Client” on page 23

v “Enabling SCI Ready State” on page 23

v “Sequence for Coding CSL Requests” on page 23

Registering to SCI

Registering to SCI with the CSLSCREG request (described in “CSLSCREG:

Registration Request” on page 188) is the foundation for using the CSL managers.

It must be the first request issued. When you register to SCI, you identify:

v The name of the IMSplex.

v Your client name, which must be unique if it is an authorized client.

v Exit routines, if you elect to use them.

v Your type of address space.

Recommendation: Use a type of AOP or OTHER for the address space.

Defining your address space by a type that is not AOP or OTHER could interfere

with IMS address spaces.

After you register to SCI, an SCI token is returned. The token uniquely identifies an

IMSplex member’s connection to SCI. It should be saved for future OM, RM, and

SCI requests.

Registering an OM Client

OM clients can be categorized as command processing clients (see “Registering

Command Processing Clients in a CSL” on page 37 and “Command Processing

Clients and the CSL OM” on page 93) or AOP clients. AOP clients do not register to

OM; command processing clients do. To register an OM command processing

client:

1. Identify the SCI Notify exit with the CSLSCREG request; this allows the client to

be notified when a new OM joins the IMSplex, so the client can register to the

new OM.

2. Identify the SCI Input exits with the CSLSCREG request so that command

processing clients can process OM directives.

3. Issue CSLSCQRY to determine which OMs are in the IMSplex.

4. Issue CSLOMREG to all OMs in the IMSplex that are reachable and ready to

register a command list to OM.

It is important to consider the level of command security for OM. See “CSL OM

Command Security” on page 39 for information on OM command security.

22 Common Service Layer Guide and Reference

|
|
|
|
|

|

|

|

|

|

|
|
|

|
|
|

Recommendation: Command processing clients should return their responses

using the XML statements described in Appendix A, “CSL Operations Manager XML

Output,” on page 205. This allows the responses to be viewed from a SPOC

terminal and processed by an AOP.

Registering an RM Client

If you have resources that you want to manage, or if you want to access or use

IMSplex-wide processes, you must register an RM client:

1. Identify the SCI Notify exit routine with the CSLSCREG request; this allows the

client to be notified when a new RM joins the IMSplex, so the client can register

to the new RM.

2. Identify the SCI Input exit routine with the CSLSCREG request; you must have

an SCI input exit routine if you are using IMSplex-wide processes to handle RM

directives.

3. Issue CSLSCQRY to determine which RMs are in the IMSplex.

4. Issue CSLRMREG to all RMs in the IMSplex that are reachable and ready.

5. Register the resource type and associated name type if you want RM to

manage global resources.

Enabling SCI Ready State

With the SCI, there are two states: registered and ready. The CSLSCRDY request

(described in “CSLSCRDY: Ready Request” on page 187) enables an IMSplex

member to receive messages and requests routed by type. An IMSplex member

that is registered but has not issued a CSLSCRDY request can process only

messages and requests that are specifically directed to it.

Sequence for Coding CSL Requests

When you are ready to begin coding requests, note that there is a sequence in

which the requests should be issued.

v Table 32 on page 92 lists the sequence for an AOP OM client running on the

host.

v Table 33 on page 92 lists the sequence for an AOP OM client running on the

workstation.

v Table 34 on page 93 lists the sequence for an OM command processing client.

v Table 44 on page 111 lists the sequence for an RM client.

v Table 45 on page 111 lists the sequence for an RM client participating in

IMSplex-wide processes.

Sending Commands to the IMSplex

After setting up an IMSplex, you can issue commands using the TSO single point of

control (SPOC) interface. You can also write an automated operator program that

can issue the same commands. See IMS Version 9: Installation Volume 1:

Installation Verification for sample invocation information for the TSO SPOC. For

information on issuing commands using the TSO SPOC, refer to IMS Version 9:

Operations Guide. The TSO SPOC also provides integrated online help.

The IMS Application Menu provides a common interface to enable you to start

applications such as TSO SPOC, Syntax Checker, IVP, and more. For more

information about the IMS Application Menu, see IMS Version 9: Installation

Volume 1: Installation Verification.

Chapter 2. Using The Common Service Layer in an IMSplex 23

|
|
|

|

If you write automated programs, those programs must include logic to handle the

responses from the commands; the automated programs have to parse the XML

statements described in Appendix A, “CSL Operations Manager XML Output,” on

page 205.

Most commands that are issued to an IMSplex are issued to OM. The exceptions

are:

v BPE commands, which can be issued directly to CSL members and to CQS.

v The SHUTDOWN command, which can be issued directly to SCI to shut down

one or more CSL members.

v Query requests issued by a z/OS master console to the CSL.

In an IMSplex, the format, behavior, and responses to certain IMS commands has

changed. Some IMS commands are no longer recoverable; others are not

supported in an IMSplex. Some commands are supported only in an IMSplex. For

complete information on submitting commands in an IMSplex, see IMS Version 9:

Command Reference.

Querying Statistics from the IMSplex Using CSLZQRY

In an IMSplex, you might want to query statistics about one or more components in

the CSL. You can write an IMSplex member program, for example, an automated

operations program (AOP), that uses the CSLZQRY request to obtain statistics. Any

member of an IMSplex can issue the CSLZQRY request.

CSLZQRY: Query Request

Use FUNC=DSECT to include equate (EQU) statements in your program for the

CSLZQRY parameter list length and the CSLZQRY return and reason codes.

�� CSLZQRY FUNC=DSECT ��

Use FUNC=STATS to request statistics from OM, RM, or SCI. The information that is

returned from the CSLZQRY request is the same information that is passed to the

STATS exit for that particular OM, RM, or SCI.

�� CSLZQRY FUNC=STATS A ��

A:

 MBRNAME=mbrname OUTPUT=outputbuffer OUTLEN=outputbufferlen PARM=parm �

�
ECB=ecb

 RETCODE=returncode RSNCODE=reasoncode SCITOKEN=scitoken

CSLZQRY Request Parameters

The parameters for the CSLZQRY request are described in this topic.

ECB=symbol

ECB=(r2-r12)

(Optional) - Specifies a z/OS event control block (ECB) used for asynchronous

requests. When the request is complete, the ECB specified is posted. If an ECB

is not specified, the task is suspended until the request is complete. If an ECB

24 Common Service Layer Guide and Reference

is specified, the invoker of the request must issue a WAIT (or equivalent) after

receiving control from CSLZQRY and before using or examining any data

returned by this request (including the RETCODE and RSNCODE fields).

MBRNAME=symbol

MBRNAME=(r2-r12)

(Required) - A four-byte input parameter that specifies the address of the

eight-byte CSL member name to which to send the query.

OUTLEN=symbol

OUTLEN=(r2-r12)

(Required) - A four-byte output parameter that is used to receive the length of

the output buffer. When the request returns, this word contains the length of the

buffer pointed to by the OUTPUT= parameter. The output length is zero if no

output is built, for example, when an error is detected before any output can be

built. When the caller is done with this storage, it is the caller’s responsibility to

release the storage by issuing a CSLSCBFR request. See “CSLSCBFR: Buffer

Return Request” on page 172 for more information.

OUTPUT=symbol

OUTPUT=(r2-r12)

(Required) - Specifies a 4-byte field to receive the address of the variable

length output returned by the CSLZQRY request. The output contains the

results of the CSLZQRY. The output length is returned in the OUTLEN= field.

The output address is zero if no output was built, for example, if an error was

detected before any output could be built. This buffer is not preallocated by the

caller. When the caller is done with this storage, it is the caller’s responsibility to

release the storage by issuing a CSLSCBFR request. See “CSLSCBFR: Buffer

Return Request” on page 172 for more information.

PARM=symbol

PARM=(r2-r12)

(Required) - Specifies the CSLZQRY parameter list. The length of the

parameter list must be equal to the parameter list length EQU value defined by

ZQRY_PARMLN.

RETCODE=symbol

RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. This

can be returned by OM, RM, or SCI. OM return codes are defined in CSLORR.

RM return codes are defined in CSLRRR. SCI return codes are defined in

CSLSRR.

RSNCODE=symbol

RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. This

can be returned by OM, RM, or SCI. OM reason codes are defined in CSLORR.

RM reason codes are defined in CSLRRR. SCI reason codes are defined in

CSLSRR.

SCITOKEN=symbol

SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token

uniquely identifies this connection to SCI. The SCI token was returned by a

successful CSLSCREG FUNC=REGISTER request.

Chapter 2. Using The Common Service Layer in an IMSplex 25

Shutting Down the CSL

A CSL is comprised of multiple components. Accordingly, you can shut down either

an entire CSL or individual CSL manager address spaces. You can shut down:

v A single CSL component such as an OM, RM, or SCI

v A CSL, including all of its components, on a single z/OS image

v A CSL, including all of its components, that spans an IMSplex across multiple

z/OS images

Before you shut down the CSL or any of its components, consider the following:

v You do not need to shut down other IMSplex members when you shut down CSL

managers (SCI, OM, or RM) for maintenance.

v If you shut down an OM or RM for maintenance and there are other OMs or RMs

active in the IMSplex, IMSplex members can still participate in IMSplex activities.

However, an IMSplex member can communicate only with the SCI with which it

is registered. If that SCI is shut down, any IMSplex members on the same z/OS

image as that SCI cannot communicate with other IMSplex members until that

SCI is restarted.

You can shut down the CSL by issuing:

1. The CSLZSHUT request, described in “CSLZSHUT: Shut Down Request.”

2. A z/OS STOP command to individual CSL manager address spaces.

3. A CSL SHUTDOWN command using the z/OS MODIFY COMMAND interface.

Sample syntax for the z/OS commands is described in “Shutting Down the CSL

Using z/OS Commands” on page 28.

CSLZSHUT: Shut Down Request

CSLZSHUT is a programming interface. It allows you to shut down one or more

CSL address spaces from within an assembler program. With the CSLZSHUT

request, you can terminate:

v A single CSL manager (OM, RM, or SCI)

v A CSL and all of its components on a single z/OS image

v A CSL and all of its components for an IMSplex across multiple z/OS images

The CSLZSHUT request is sent as a message, so control returns to the program

that issued the request after the request is sent.

To shut down a single CSL component, send the CSLZSHUT

FUNC=QUIESCE,SCOPE=CSLMEMBER message to the component you want to shut down.

To shut down a CSL and all of its components on a single z/OS image, either:

v Send a CSLZSHUT FUNC=QUIESCE,SCOPE=CSLLOCAL message to the SCI that is

active on the z/OS image that contains the CSL to be shut down.

v Send a CSLZSHUT FUNC=QUIESCE,SCOPE=CSLLOCAL,OSNAME=xxxx message to any

SCI active in the IMSplex (where xxxx is the z/OS image where the CSL to be

shut down is active). SCI sends a CSLZSHUT request to all of the CSL

components to be shut down.

To shut down the CSL on an entire IMSplex, send a CSLZSHUT

FUNC=QUIESCE,SCOPE=CSLPLEX message to any SCI active in the IMSplex. SCI sends

a CSLZSHUT request to all the CSL components in the IMSplex.

26 Common Service Layer Guide and Reference

|
|
|
|
|
|

|
|

The parameters for the CSLZSHUT request are described in “The CSLZSHUT

Request Parameters.”

Format of the CSLZSHUT Request

CSLZSHUT DSECT Syntax: Use FUNC=DSECT to include equate (EQU) statements

in your program for the CSLZSHUT parameter list length and the CSLZSHUT return

and reason codes.

�� CSLZSHUT FUNC=DSECT ��

CSLZSHUT QUIESCE Syntax: Use FUNC=QUIESCE to request that a CSL

component shut down normally. Any work that the CSL component is currently

processing is completed, and then the component shuts down. After processing the

request, that component will not accept any new work.

If the component that is being shut down is an SCI, the IMSplex members that are

currently registered with that SCI are not deregistered before SCI terminates. This

can impact event notification. These IMSplex members cannot communicate with

other IMSplex members because their SCI is shut down. If one or more of the

“orphaned” members is shut down or fails, the other IMSplex members are not

notified of the shutdown or failure event until SCI comes back online.

Notification of the shutdown or failure depends on the authorization level of the

members. If the terminating member is non-authorized, other members are notified

when SCI restarts. If the terminating member is authorized, other authorized

members, including orphaned authorized members, are notified before SCI restarts.

The CSLZSHUT Request Parameters

The following is a description of the CSLZSHUT request parameters.

MBRNAME=symbol

MBRNAME=(r2-r12)

(Required if SCOPE=CSLMEMBER) - Specifies the eight-byte CSL member

name to which to send the shutdown request.

OSNAME=symbol

OSNAME=(r2-r12)

(Required if SCOPE=CSLLOCAL) - Specifies the eight-byte name of the CSL,

running on the z/OS image, that is to be shut down. If the OSNAME parameter

is specified and the SCI is not active on the z/OS image specified, the

command will not be processed.

PARM=symbol

�� CSLZSHUT FUNC=QUIESCE A ��

A:

 SCITOKEN=scitokenaddress SCOPE=CSLMEMBER MBRNAME=mbrnameaddress

SCOPE=CSLLOCAL

OSNAME=osnameaddress

SCOPE=CSLPLEX

 �

� PARM=parmaddress RETCODE=returncodeaddress RSNCODE=reasoncodeaddress

Chapter 2. Using The Common Service Layer in an IMSplex 27

|
|
|
|

|
|

|
|
|
|

PARM=(r1-r12)

(Required) - Specifies the CSLZSHUT parameter list. The length of the

parameter list must be equal to the parameter list length EQU value defined by

ZSHUT_PARMLN.

RETCODE=symbol

RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. SCI

return codes are defined in CSLSRR.

RSNCODE=symbol

RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. SCI

reason codes are defined in CSLSRR.

SCITOKEN=symbol

SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token

uniquely identifies this connection to SCI. The SCI token was returned by a

successful CSLSCREG FUNC=REGISTER request.

SCOPE=CSLMEMBER | CSLLOCAL | CSLPLEX

(Required) - Specifies the scope of the CSL termination. Valid values for the

SCOPE parameter are:

CSLMEMBER

This requests the CSL component receiving the request to shut itself

down. CSLMEMBER can be processed by any CSL component.

CSLLOCAL

This requests that the CSL components on a single z/OS image be shut

down. If the OSNAME parameter is also specified, the CSL components

on that particular z/OS image are shut down. If the OSNAME parameter

is specified and the SCI is not active on the z/OS image specified, the

command will not be processed. If the OSNAME parameter is not

specified, the SCI receiving the message shuts down the CSL on the

local z/OS image. Only an SCI can process a SCOPE=CSLLOCAL

request. If this request is sent to other CSL components, it is ignored.

CSLPLEX

This requests that the CSL components in an entire IMSplex be shut

down. Only an SCI can process a SCOPE=CSLPLEX request. If this

request is sent to other CSL components, it is ignored.

Shutting Down the CSL Using z/OS Commands

You can shut down the CSL as one unit by issuing the CSL SHUTDOWN command

to any SCI in the IMSplex with the z/OS MODIFY command interface. You can stop

individual modular units in the IMSplex by issuing the z/OS STOP command to the

address space you want to stop.

Recommendation: Use the CSL SHUTDOWN command with the z/OS MODIFY

command interface to shut down the CSL, rather than stopping individual

components.

To shut down a CSL on one z/OS image, issue the z/OS MODIFY command as

follows:

F scijobname,SHUTDOWN CSLLCL

28 Common Service Layer Guide and Reference

|
|
|
|
|
|
|
|

|
|
|

This command shuts down the CSL on the z/OS image associated with the SCI that

receives the command. Use this version of the command to shut down the CSL on

a single z/OS image in an orderly way.

To shut down an entire IMSplex, issue the z/OS MODIFY command as follows:

F scijobname,SHUTDOWN CSLPLEX

This command shuts down the CSL managers on all z/OS images in a single

IMSplex associated with the SCI that receives the command.

Note: To shut down the CSL managers using the SHUTDOWN CSLPLEX

command, a local SCI is required. If you issue the SHUTDOWN CSLPLEX

command on a system without an active SCI, the CSL managers will not

shut down.

In each of these examples, scijobname is the name of the SCI in the CSL. After it

receives the command, SCI notifies other CSL managers (OMs and RMs) to stop,

and then SCI stops. If clients are currently connected to any CSL manager and

were not first stopped with a /CHE FREEZE or other command, message CSL0300I is

issued, work is quiesced, and then the CSL manager stops.

Using the z/OS Automatic Restart Manager with the CSL

A CSL address space (OM, RM, SCI), if requested, can register with the z/OS

Automatic Restart Manager (ARM). The ARM is a z/OS recovery function that can

improve the availability of started tasks. When a task fails or the system on which it

is running fails, the ARM can restart the task without operator intervention.

IBM provides policy defaults for automatic restart management. You can use these

defaults, or you can define your own ARM policy to specify how CSL address

spaces should be restarted. The ARM policy specifies what should be done if the

system fails or if a CSL address space fails.

To enable the ARM, you can specify ARMRST=Y in one of two ways:

v In the CSL address space initialization PROCLIB member

– CSLSIxxx for SCI

– CSLRIxxx for RM

– CSLOIxxx for OM

v As an execution parameter

When ARM is enabled, the CSL address spaces register to ARM with an ARM

element name, which are defined in Table 7.

 Table 7. ARM element names

CSL Address Space ARM element name

OM “CSL” + omname + “OM”

RM “CSL” + rmname + “RM”

SCI “CSL” + sciname + “SCI”

Note: The name of the CSL address space is the name defined either as an

execution parameter, or in the initialization PROCLIB member of that CSL

address space. For example, if OMNAME=OM1A in the CSLOIxxx PROCLIB

member, the ARM element name is CSLOM1AOM.

Chapter 2. Using The Common Service Layer in an IMSplex 29

Use the appropriate ARM element name in your ARM policy for each CSL address

space. For more information, see z/OS MVS: Setting Up a Sysplex.

An abend table exists in the module for each CSL address space:

v CSLOARM0 for OM

v CSLRARM0 for RM

v CSLSARM0 for SCI

The table lists the abends for which the ARM does not restart the CSL address

space after the abend occurs. You can modify this table.

30 Common Service Layer Guide and Reference

Chapter 3. CSL Operations Manager

These topics describe the OM component of the CSL:

v “Overview of the CSL Operations Manager”

v “CSL OM Definition and Tailoring”

v “CSL OM Administration” on page 37

v “CSL OM User Exit Routines” on page 40

v “CSL OM Automated Operator Program Clients” on page 91

v “CSL OM Command Processing Client Requests” on page 78

v “CSL OM Directives” on page 94

Overview of the CSL Operations Manager

OM controls the operations of an IMSplex. OM provides an application

programming interface (the OM API) through which commands can be issued and

responses received. With a single point of control (SPOC) interface, you can submit

commands to OM. The SPOC interfaces include the TSO SPOC, the REXX SPOC

API, and the IMS Control Center. You can also write your own application to submit

commands.

OM:

v Routes IMS commands to IMSplex members registered for the command.

v Consolidates command responses from individual IMSplex members into a single

response and provides that response to the originator of the command.

v Provides an API for automated operator commands.

v Provides a general use interface to register commands to support any command

processing client.

v Provides user exits for command and response edit and command security.

One OM must be defined in the IMSplex to use OM functions. Each z/OS image

can have more than one OM. If multiple OMs are defined in the IMSplex, any OM

defined can perform work from any z/OS image in the IMSplex.

CSL OM Definition and Tailoring

This topic describes the system definition and tailoring considerations for an OM in

the CSL. For information on IMS system definition and tailoring, see IMS Version 9:

Installation Volume 2: System Definition and Tailoring.

This following topics provide additional information:

v “CSL OM Startup Procedure”

v “CSL OM Execution Parameters” on page 32

v “BPE Considerations for the CSL OM” on page 34

v “CSL OM Initialization Parameters PROCLIB Member” on page 35

CSL OM Startup Procedure

You can start OM as a started procedure or with JCL. A sample startup procedure,

shown in Figure 12 on page 32, is called CSLOM and can be found in

IMS.PROCLIB.

© Copyright IBM Corp. 2002, 2005 31

CSL OM Execution Parameters

The parameters that you can specify as execution parameters on the startup

procedure for OM follow. Some parameters that are required for OM initialization

can also be specified in the initialization parameters PROCLIB member (see “CSL

OM Initialization Parameters PROCLIB Member” on page 35).

ARMRST= Y | N

Specifies whether the z/OS Automatic Restart Manager (ARM) is to be used to

restart the OM address space after an abend. If you specify Y (yes), ARM

restarts the OM address space after most system failures. If you specify N (no),

ARM does not restart the OM address space after any system failure.

//**

//* OM Procedure

//*

//*

//* Parameters:

//* BPECFG - Name of BPE member

//* OMINIT - Suffix for your CSLOIxxx member

//* PARM1 - other override parameters:

//* ARMRST - Indicates if ARM should be used

//* CMDLANG - Language for command description text

//* CMDSEC - Command security method

//* OMNAME - Name of OM being started

//*

//* example:

//* PARM1=’ARMRST=Y,CMDSEC=R,OMNAME=OM1,CMDLANG=ENU’

//*

//***@SCPYRT**

//* *

//* Licensed Materials - Property of IBM *

//* *

//* "Restricted Materials of IBM" *

//* *

//* 5655-J38 (C) Copyright IBM Corp. 2003 *

//* *

//***@ECPYRT**

//*

//CSLOM PROC RGN=3000K,SOUT=A,

// RESLIB=’IMS.SDFSRESL’,

// BPECFG=BPECONFG,

// OMINIT=000,

// PARM1=

//*

//OMPROC EXEC PGM=BPEINI00,REGION=&RGN,

// PARM=’BPECFG=&BPECFG,BPEINIT=CSLOINI0,OMINIT=&OMINIT,&PARM1’

//*

//STEPLIB DD DSN=&RESLIB,DISP=SHR

// DD DSN=SYS1.CSSLIB,DISP=SHR

//PROCLIB DD DSN=IMS.PROCLIB,DISP=SHR

//SYSPRINT DD SYSOUT=&SOUT

//SYSUDUMP DD SYSOUT=&SOUT

//*

Figure 12. Sample OM Startup Procedure

��

ARMRST=
 Y

N

ENU

CMDLANG=

 N

CMDSEC=

OMNAME=ommbrname

A

E

R

��

32 Common Service Layer Guide and Reference

ARM does not restart the OM address space if OM abends before restart is

complete.

 This is an optional execution parameter. If specified, it overrides the value

specified in the CSLOIxxx PROCLIB member. For more information on ARM,

see “Using the z/OS Automatic Restart Manager with the CSL” on page 29.

BPECFG=

Specifies an 8-character name for the BPE configuration parameters PROCLIB

member. This parameter can only be specified as an execution parameter. If a

PROCLIB member is not specified, BPE uses default values for all parameters.

This parameter is optional. If it is not specified, the BPE defaults are no user

exits, a trace level of error, and US English as the language.

BPEINIT=CSLOINI0

Specifies the name of the module that contains OM start up values required by

BPEINI00 to start an OM address space. For OM, this value must be

CSLOINI0. This required parameter can only be specified as an execution

parameter.

CMDLANG=ENU

Specifies the language to be used for IMS command text that is distributed to

OM automation clients upon request. This affects only the command

descriptions that are displayed on a workstation SPOC that requests command

text from OM. This value defaults to ENU for US English.

 The value is not validated at OM initialization time. It is validated only when a

CSLOMQRY QUERY TYPE(CMDSYNTAX) request is issued. OM attempts to read a

partitioned data set (PDS) member in the data set specified by the

CMDTEXTDSN= with a member name of “CSLOT” concatenated with the 3

character CMDLANG= value. This is the member that contains the command

syntax translatable text. The CMDLANG= value can be overridden on the

CSLOMQRY request.

 This is an optional execution parameter. If specified, it overrides the value

specified in the CSLOIxxx PROCLIB member.

CMDSEC=

Specifies the security method to be used for OM command security.

A Specifies that both RACF® (or an equivalent security product) and the

OM Security exit are to be called (options E and R). RACF is called

first. Then the security authorization facility (SAF) return code, RACF

return code, and RACF reason code are passed to the exit. These

return codes are decoded into a security code, which is also passed to

the exit for processing.

E Specifies that the OM Security user exit routine is to be called for

command authorization.

N Specifies that no authorization checking is to be done. This is the

default.

R Specifies that RACF (or an equivalent security product) is to be called

for command authorization.

This is an optional execution parameter. If specified, it overrides the value

specified in the CSLOIxxx PROCLIB member. If not specified, the value in the

CSLOIxxx PROCLIB member is used.

Chapter 3. CSL Operations Manager 33

OMINIT=000

Specifies a 3-character suffix for the OM initialization parameters PROCLIB

member, CSLOIxxx. This parameter can only be specified as an execution

parameter. The default suffix is 000.

OMNAME=ommbrname

Specifies the name for the OM address space. This is an optional 1-6 character

name. If specified, it overrides the value specified in the CSLOIxxx PROCLIB

member. You must specify this parameter either as an execution parameter or

in the CSLOIxxx PROCLIB member. This name is used to create the OMID,

which is used in OM processing. The 8-character OMID is the OMNAME

followed by the characters ″OM″. Trailing blanks in the OMNAME are deleted,

and the OMID is padded with blanks. For example, if OMNAME=ABC then

OMID=″ABCOM ″.

BPE Considerations for the CSL OM

Use the OM BPE user exit list PROCLIB member to define OM user exits to BPE.

The member is the PROCLIB member specified by the EXITMBR= parameter in the

BPE configuration parameter PROCLIB member.

Use the user exit list PROCLIB member to specify the modules to be called for

specific exit types. Each user exit type can have one or more exit modules

associated with it. Use the EXITDEF statement to define the user exit modules to

be called for a given exit type.

The BPE user exit PROCLIB member and BPE configuration PROCLIB member

are described in IMS Version 9: Base Primitive Environment Guide and Reference.

A sample OM BPE user exit list PROCLIB member is shown in Figure 13 on page

35.

34 Common Service Layer Guide and Reference

CSL OM Initialization Parameters PROCLIB Member

Use the CSLOIxxx PROCLIB member to specify parameters that initialize the OM

address space. Certain parameters within CSLOIxxx can be overridden with the OM

execution parameters.

A CSLOIxxx member consists of one or more fixed-length character records (the

configuration data set can be of any LRECL greater than eight, but it must be fixed

record format). The rightmost-eight columns are ignored but can be used for

sequence numbers or any other notation. Keyword parameters can be coded in the

remaining columns in free format, and can contain leading and trailing blanks. You

can specify multiple keywords in each record; use commas or spaces to delimit

keywords. Statements that begin with a “*” or “#” in column 1 are comment lines

and are ignored. Additionally, comments can be included anywhere within a

statement by enclosing them between “ /* ”and “*/”, for example, /* PROCLIB

comments */. Values coded in this PROCLIB member are case-sensitive. In general,

you should use upper case for all parameters.

ARMRST= Y | N

 Specifies whether the z/OS Automatic Restart Manager (ARM) is to be used to

restart the OM address space after an abend. If you specify Y (yes), ARM

restarts the OM address space after most system failures. If you specify N (no),

ARM does not restart the OM address space after any system failure.

 ARM does not restart the OM address space if OM abends before restart is

complete. For more information on ARM, see “Using the z/OS Automatic Restart

Manager with the CSL” on page 29.

CMDLANG= ENU

The language to be used for IMS command text that is distributed to OM

automation clients upon request. This affects only the command descriptions

**

* OM USER EXIT LIST PROCLIB MEMBER *

**

#---#

DEFINE 1 OM CLIENT CONNECTION USER EXIT: ZOCLNCN0 #

#---#

EXITDEF(TYPE=CLNTCONN,EXITS=(ZOCLNCN0),COMP=OM)

#---#

DEFINE 1 OM INIT/TERM USER EXIT: ZOINTM00 #

#---#

EXITDEF(TYPE=INITTERM,EXITS=(ZOINTM00),COMP=OM)

#---#

DEFINE 1 OM INPUT USER EXIT: ZINPUT00 #

WITH AN ABEND LIMIT OF 8. #

#---#

EXITDEF(TYPE=INPUT,EXITS=(ZINPUT00),ABLIM=8,COMP=OM)

#---#

DEFINE 1 OM OUTPUT USER EXIT: ZOUTPUT0 #

#---#

EXITDEF(TYPE=OUTPUT,EXITS=(ZOUTPUT0),COMP=OM)

#---#

DEFINE 1 OM SECURITY USER EXIT: ZSECURE0 #

#---#

EXITDEF(TYPE=SECURITY,EXITS=(ZSECURE0),COMP=OM)

Figure 13. OM User Exit List PROCLIB Member

Chapter 3. CSL Operations Manager 35

that are displayed on a workstation SPOC that requests command text from

OM. This value defaults to ENU for US English.

 The value is not validated at OM initialization time. It is only validated when a

CSLOMQRY QUERY TYPE(CMDSYNTAX) request is issued. OM attempts to read a

PDS member in the data set specified by the CMDTEXTDSN= with a member

name of “CSLOT” concatenated with the 3 character CMDLANG= value. This is

the member that contains the command syntax translatable text. The

CMDLANG= value can be overridden on the CSLOMQRY request.

 This parameter can be specified as an execution parameter on the OM

procedure to override the value in CSLOIxxx.

CMDSEC=

Specifies the security method to be used for OM command security.

A Specifies that both RACF (or an equivalent security product) and the

exit are to be called (options E and R). RACF is called first. Then the

security authorization facility (SAF) return code, RACF return code, and

RACF reason code are passed to the exit. These return codes are

decoded into a security code, which is also passed to the exit for

processing.

E Specifies that the OM Security user exit routine is to be called for

command authorization.

N Specifies that no authorization checking is to be done. This is the

default.

R Specifies that RACF (or an equivalent security product) is to be called

for command authorization.

CMDTEXTDSN=

Specifies the data set name for the PDS that contains the command syntax

translatable text. This keyword is required. The parameter value is the 1-44

character data set name. The data set must be a PDS with fixed length record

members.

IMSPLEX()

Specifies definitions for an IMSplex managed by OM. IMSPLEX is a required

parameter. There is no default. Only one IMSPLEX keyword can be specified.

The IMSPLEX keyword must precede the left parenthesis. The IMSPLEX

definition parameters follow:

NAME=

Specifies a 1-5 character identifier that specifies the IMSplex group

name. OM concatenates this identifier to “CSL” to create the IMSplex

group name. All IMSplex member address spaces that are in the same

IMSplex group sharing either databases or message queues must

specify the same identifier. The same identifier must also be used for

the IMSPLEX= parameter in the CSLSIxxx, CSLRIxxx and DFSCGxxx

PROCLIB members.

OMNAME=ommbrname

Specifies the name for the OM address space. This is an optional 1-6 character

name. Specify this parameter either as an execution parameter or in the

CSLOIxxx PROCLIB member. This name is used to create the OMID which is

used in OM processing. The 8-character OMID is the OMNAME followed by the

characters ″OM″. Trailing blanks in the OMNAME are deleted and the OMID is

padded with blanks. For example, if OMNAME=ABC then OMID=″ABCOM ″.

36 Common Service Layer Guide and Reference

A sample CSLOIxxx PROCLIB member is shown in Figure 14. The sample, called

CSLOI000, is provided as part of IMS.PROCLIB.

CSL OM Administration

The administrative tasks associated with OM are described in the following topics:

v “Starting or Restarting the CSL OM”

v “Registering Command Processing Clients in a CSL”

v “Shutting Down the CSL OM” on page 38

v “Command Processing Considerations in a CSL OM” on page 38

Starting or Restarting the CSL OM

You start OM by issuing a z/OS START command to run the OM procedure. To start

an OM address space with a started procedure, issue the z/OS START command as

follows:

S omjobname

In this example, omjobname is the job name of the OM address space to be started.

For more information on the initialization parameters, see “CSL OM Execution

Parameters” on page 32. You can also provide JCL to run the OM procedure.

After OM is started, if it is abnormally terminated, it can be restarted using the z/OS

Automatic Restart Manager (ARM). OM must complete initialization for ARM to

restart the address space if an abend occurs. Use of ARM to restart OM is the

default.

Registering Command Processing Clients in a CSL

Before a command processing client, such as IMS, can process commands from an

OM, it must first register its commands with an OM. By registering, it identifies the

commands that it intends to process. You can register a command processing client

by using CSLOMBLD to build a list of commands to be registered and the

CSLOMREG request to send the list to an OM.

After the command processing client is registered, it must notify OM that it is ready

to process commands before OM sends any commands. It does this by issuing the

CSLOMRDY request to OM.

--

* Sample OM Initialization PROCLIB Member.

--

ARMRST=Y, /* ARM should restart OM on failure */

CMDLANG=ENU, /* Use English for Command Desc */

CMDSEC=N, /* No Command Security */

OMNAME=OM1, /* OM Name (OMID = OM1OM) */

IMSPLEX(NAME=PLEX1) /* IMSplex Name (CSLPLEX1) */

CMDTEXTDSN=IMSTESTG.DUMMY.TRNTBL /* CMD Syntax Translation Table */

--

* End of Member CSLOI000 *

--

Figure 14. CSLOIxxx PROCLIB member

Chapter 3. CSL Operations Manager 37

|
|
|
|
|
|
|
|
|
|
|
|
|
|

When the command processing client wants to stop processing commands from an

OM, it issues a CSLOMDRG request. This request deregisters the client from OM

and prevents further command processing.

For more information on these requests, see:

v “CSLOMREG: Command Registration Request” on page 85

v “CSLOMRDY: Ready Request” on page 84

v “CSLOMDRG: Command Deregistration Request” on page 81

Shutting Down the CSL OM

Recommendation: Although you can shut down OM by itself, IBM recommends

that you shut down OM by shutting down the CSL as one unit. For information

about shutting down the CSL, see “Shutting Down the CSL” on page 26.

To shut down OM by itself, issue one of the following:

v The CSLZSHUT request, described in “CSLZSHUT: Shut Down Request” on

page 26

v The z/OS STOP command:

P omjobname

In this example, omjobname is the job name of the OM address space to stop. If no

clients are connected to OM, OM shuts down. If clients are connected to OM,

message CSL0300I is issued, and OM quiesces in-flight work. After all work is

quiesced, the OM address space terminates.

Before shutting down an OM, consider the reasons for shutting down and how

shutting down OM can impact other IMSplex members. For more information, see

“Shutting Down the CSL” on page 26.

Command Processing Considerations in a CSL OM

In an IMSplex environment, commands issued to OM can behave differently than

commands issued to a single IMS system. This topic describes some of these

behavioral and usage differences in specific configurations, as well as OM

command security considerations.

CSL OM Command Routing

Commands that are issued to OM are, by default, routed to all IMSs in the IMSplex

that are active and registered to process that particular command. If you want to

route a command to one or more specific command processing clients in the

IMSplex, use the ROUTE parameter on the CSLOMCMD request or the CSLOMI

API. You can also specify routing information with the TSO SPOC and IMS control

center. For information on how to specify the ROUTE parameter, see “CSLOMI: API

Request” on page 63 and “CSLOMCMD: Command Request” on page 55. Refer

also to the online help provided with the TSO SPOC and IMS Control Center.

For information about installing and using the IMS Control Center, go to the

Information Management Software for z/OS Solutions Information Center on the

Web at publib.boulder.ibm.com/infocenter/dzichelp/v2r2/index.jsp and click IMS

Version 9 in the Contents pane, then select IMS Control Center.

In an IMSplex, a command comes from a SPOC or AOP to OM. It is then routed to

IMS systems; each IMS system returns its command output. OM then consolidates

the individual responses and sends consolidated output, encapsulated in XML tags,

back to the client originating the request. This routing is shown in Figure 15 on

page 39 OS1 has an SCI, a SPOC TSO/ISPF application, an automation program.

38 Common Service Layer Guide and Reference

|
|
|

|
|
|
|

|

|
|
|
|

|
|
|

|
|
|
|

OS2 has an OM with an SCI, and IMS control region with an SCI. OS3 has two

IMS control regions, each with an SCI. The command is routed from OS1’s SCI to

OM in OS2. The SCI that is associated with that OM routes the command to other

IMS systems through those system’s SCI.

CSL OM Command Responses

When commands are issued to an OM, command responses are encapsulated in

XML tags. More information on this XML output is in “CSL OM XML Output” on

page 93.

For comprehensive information about IMS commands and their responses, see IMS

Version 9: Command Reference.

CSL OM Command Security

OM command security is optionally performed during command processing.

Command security allows:

v The user to control which user IDs can enter IMS commands through OM

v The user ID to be associated with an application program address space

v The user ID to be the end user logged onto TSO SPOC

The CMDSEC= parameter is available on the OM startup procedure (CSLOM), the

OM initialization PROCLIB member (CSLOIxxx), and the DFSCGxxx PROCLIB

member. When it is issued as part of the OM startup procedure, it applies to all IMS

commands, type-1 and type-2. When it is issued using the DFSCGxxx PROCLIB

member, it applies only to type-1 commands entered through OM. The differences

in OM and IMS security are described in Table 8.

 Table 8. Comparing OM and IMS Security

Security

Method N A E R

OM Execution

Parameter

(CSLOM and

CSLOIxxx)

No authorization

checking is

performed. This

is the default.

Calls both RACF

and the OM

Command

Security Exit

routine for

command

authorization.

Calls the OM

Command

Security Exit

routine for

command

authorization.

Calls RACF for

command

authorization.

Commands are

part of the

OPERCMDS

resource class.

Figure 15. Command Routing in an IMSplex with CSL

Chapter 3. CSL Operations Manager 39

|
|
|
|
|
|

||

|
|||||

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

Table 8. Comparing OM and IMS Security (continued)

Security

Method N A E R

DFSCGxxx

PROCLIB

member

No authorization

checking is

performed. This

is the default.

OM might

perform

command

authorization.

Calls both RACF

and the IMS

Command

Authorization

Exit routine

(DFSCCMD0) for

command

authorization.

Calls the IMS

Command

Authorization

Exit routine

(DFSCCMD0) for

command

authorization.

Calls RACF for

command

authorization.

Commands are

part of the CIMS

resource class.

Recommendation: Use OM command security rather than IMS command security.

RACF access authorities (READ or UPDATE) and resource names for all

commands supported through the OM API are described in IMS Version 9:

Command Reference. The RACF authorities indicate the access authority with

which the command was registered.

Commands are registered to OM with the CSLOMBLD request. The access

authority on the RACF PERMIT command must match the access authority with

which the command was registered.

For more information on registering commands with CSLOMBLD, see “CSLOMBLD:

Command Registration Build” on page 79.

CSL OM User Exit Routines

You can write OM user exits to customize and monitor the OM environment. No

sample exits are provided.

OM uses BPE services to call and manage its user exits. BPE enables you to

externally specify the user exit modules to be called for a particular user exit type

by using EXITDEF= statements in the BPE user exit list PROCLIB members. BPE

also provides a common user exit runtime environment for all user exits. This

environment includes a standard user exit parameter list, callable services, static

and dynamic work areas for the exits, and a recovery environment for user exit

abends. For more information about the BPE user exit interface, see IMS Version 9:

Base Primitive Environment Guide and Reference.

CSL OM Client Connection User Exit

This exit is called when a client registers or deregisters commands with OM. This

exit is optional.

This exit is called for the following event:

v A client issues the CSLOMRDY request to indicate that the client is ready to

accept commands for processing.

This exit is defined as TYPE=CLNTCONN in the EXITDEF statement in the BPE

user exit list PROCLIB member. You can specify one or more user exits of this type.

When this exit is invoked, all user exits of this type are driven in the order specified

by the EXITS= keyword. For more information on how to define user exit module

names, see the OM BPE user exit list PROCLIB member topic in IMS Version 9:

Base Primitive Environment Guide and Reference.

40 Common Service Layer Guide and Reference

|

|
|||||

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|

|

|
|
|

This exit is invoked amode 31 and should be reentrant.

Contents of Registers on Entry

 Register Contents

1 Address of BPE user exit parameter list (mapped by macro BPEUXPL).

13 Address of the first of 2 prechained 72-byte save areas. These save areas

are chained according to standard z/OS save area linkage convention. The

first save area can be used by the exit to save registers on entry. The second

save area is for use by routines called from the user exit.

14 Return address.

15 Entry point of exit routine.

On entry to the Client Connection exit, register 1 points to a standard BPE user exit

parameter list. Field UXPL_EXITPLP in this list contains the address of the OM

Client Connection user exit parameter list, which is mapped by the CSLOCLX

macro. Field UXPL_COMPTYPEP in this list points to the character string “OM,”

indicating an OM address space.

OM Client Connection User Exit Parameter List--Client Connect: Table 9 lists

the user exit parameter list for OM Client Connection. Included are the field name,

the offset value and length, both in hexadecimal, how the field is used, and a brief

description of the field.

 Table 9. OM Client Connection User Exit Parameter List--Client Connect

Field Name Offset Length Field Usage Description

OCLX_PVER X’00’ X’04’ Input Parameter list version number (00000001).

OCLX_FUNC X’04’ X’04’ Input Function code:

3 Client ready to process commands.

OCLX_MBRNAME X’08’ X’08’ Input Client (IMSplex member) name.

OCLX_MBRTYPE X’10’ X’02’ Input IMSplex member type (mapped by CSLSTPIX).

X’12’ X’02’ None Reserved.

OCLX_MBRSTYPE X’14’ X’08’ Input IMSplex member subtype.

X’1C’ X’04’ None Reserved.

OM Client Connection User Exit Parameter List--Client Disconnect: Table 10

lists the user exit parameter list for OM Client Disconnect. Included are the offset

value and length, both in hexadecimal, how the field is used, and a brief description

of the field.

 Table 10. OM Client Connection User Exit Parameter List--Client Disconnect

Offset Length Field Usage Description

X’00’ X’04’ Input Parameter list version number (00000001).

X’04’ X’04’ Input Function code:

2 Client no longer processing commands.

X’08’ X’08’ Input Client (IMSplex member) name.

X’10’ X’02’ Input IMSplex member type (mapped by CSLSTPIX).

Chapter 3. CSL Operations Manager 41

Table 10. OM Client Connection User Exit Parameter List--Client Disconnect (continued)

Offset Length Field Usage Description

X’12’ X’01’ Input Flag byte indicates whether the client disconnect is normal or

abnormal.

X’80’ Client disconnect is abnormal.

X’13’ X’01’ None Reserved.

X’14’ X’08’ Input IMSplex member subtype.

X’1C’ X’04’ None Reserved.

Contents of Registers on Exit

 Register Contents

15 Return Code Meaning

0 Always zero

All other registers must be restored.

CSL OM Initialization/Termination User Exit

This exit enables you to initialize or terminate work areas or control blocks specific

to a user-written SPOC application. This exit is not called during OM address space

abnormal termination or IMSplex abnormal termination. This exit is optional.

This exit is called for the following events:

v After OM has completed initialization

v After each IMSplex has initialized

v When OM is normally terminating

v When an IMSplex is normally terminating

This exit is defined as TYPE=INITTERM in the EXITDEF statement in the BPE user

exit list PROCLIB member. You can specify one or more user exits of this type.

When this exit is invoked, all user exits of this type are driven in the order specified

by the EXITS= keyword. For more information on how to define user exit module

names, see the OM BPE user exit list PROCLIB member topic in IMS Version 9:

Base Primitive Environment Guide and Reference.

This exit is invoked amode 31 and should be reentrant.

Contents of Registers on Entry

 Register Contents

1 Address of BPE user exit parameter list (mapped by macro BPEUXPL).

13 Address of the first of 2 prechained 72-byte save areas. These save areas

are chained according to standard z/OS save area linkage convention. The

first save area can be used by the exit to save registers on entry. The second

save area is for use by routines called from the user exit.

14 Return address.

15 Entry point of exit routine.

On entry to the Initialization/Termination exit, register 1 points to a standard BPE

user exit parameter list. Field UXPL_EXITPLP in this list contains the address of the

42 Common Service Layer Guide and Reference

OM Initialization/Termination user exit parameter list, which is mapped by macro

CSLOITX. Field UXPL_COMPTYPEP in this list points to the character string “OM,”

indicating an OM address space.

OM Init/Term User Exit Parameter List--OM Initialization: Table 11 lists the user

exit parameter list for OM Initialization. Included are the field name, the offset value

and length, both in hexadecimal, how the field is used, and a brief description of the

field.

 Table 11. OM Init/Term User Exit Parameter List--OM Initialization

Field Name Offset Length Field Usage Description

OITX_PVER X’00’ X’04’ Input Parameter list version number (00000001).

OITX_FINIT X’04’ X’04’ Input Function code

1 OM initialization.

OM Init/Term User Exit Parameter List--OM Termination: Table 12 lists the user

exit parameter list for OM Termination. Included are the field name, the offset value

and length, both in hexadecimal, how the field is used, and a brief description of the

field.

 Table 12. OM Init/Term User Exit Parameter List--OM Termination

Field Name Offset Length Field Usage Description

OITX_PVER X’00’ X’04’ Input Parameter list version number (00000001).

OITX_FTERM X’04’ X’04’ Input Function code

1 OM normal termination.

OM Init/Term User Exit Parameter List--IMSplex Initialization: Table 13 lists the

user exit parameter list for IMSplex initialization. Included are the offset value and

length, both in hexadecimal, how the field is used, and a brief description of the

field.

 Table 13. OM Init/Term User Exit Parameter List--IMSplex Initialization

Field Name Offset Length Field Usage Description

OITX_PVER X’00’ X’04’ Input Parameter list version number (00000001).

OITX_FPLXINIT X’04’ X’04’ Input Function code

3 IMSplex normal initialization.

OITX_IPLEXNM X’08’ X’08’ Input IMSplex name.

OM Init/Term User Exit Parameter List--IMSplex Termination: Table 14 lists the

user exit parameter list for IMSplex termination. Included are the field name, the

offset value and length, both in hexadecimal, how the field is used, and a brief

description of the field.

 Table 14. OM Init/Term User Exit Parameter List--IMSplex Termination

Field Name Offset Length Field Usage Description

OITX_PVER X’00’ X’04’ Input Parameter list version number (00000001).

OITX_FPLXTERM X’04’ X’04’ Input Function code

4 IMSplex normal termination.

Chapter 3. CSL Operations Manager 43

Table 14. OM Init/Term User Exit Parameter List--IMSplex Termination (continued)

Field Name Offset Length Field Usage Description

OITX_TPLEXNM X’08’ X’08’ Input IMSplex name.

Contents of Registers on Exit

 Register Contents

15 Return Code Meaning

0 Always zero

All other registers must be restored.

CSL OM Input User Exit

This exit is called to allow a user to view and manipulate command input from an

OM automation client. This exit is optional.

This exit is called for the following event:

v OM receives a command. This exit is called before OM processes the command,

which allows the command to be modified or rejected.

This exit is defined as TYPE=INPUT in the EXITDEF statement in the BPE user exit

list PROCLIB member. You can specify one or more user exits of this type. When

this exit is invoked, all user exits of this type are driven in the order specified by the

EXITS= keyword. For more information on how to define user exit module names,

see the OM BPE user exit list PROCLIB Member topic in IMS Version 9: Base

Primitive Environment Guide and Reference.

This exit is invoked amode 31 and should be reentrant.

Contents of Registers on Entry

 Register Contents

1 Address of BPE user exit parameter list (mapped by macro BPEUXPL).

13 Address of the first of 2 prechained 72-byte save areas. These save areas

are chained according to standard z/OS save area linkage convention. The

first save area can be used by the exit to save registers on entry. The second

save area is for use by routines called from the user exit.

14 Return address.

15 Entry point of exit routine.

On entry to the Input exit, register 1 points to a standard BPE user exit parameter

list. Field UXPL_EXITPLP in this list contains the address of the OM Input user exit

parameter list, which is mapped by macro CSLOINX. Field UXPL_COMPTYPEP in

this list points to the character string “OM,” indicating an OM address space.

OM Input User Exit Parameter List--Command Input: Table 15 on page 45 lists

the user exit parameter list for command input. Included are the field name, the

offset value and length, both in hexadecimal, how the field is used, and a brief

description of the field.

44 Common Service Layer Guide and Reference

Table 15. OM Input User Exit Parameter List--Command Input

Field Name Offset Length

Field

Usage Description

OINX_PVER X’00’ X’04’ Input Parameter list version number (00000001).

OINX_FUNC X’04’ X’04’ Input Function code

1 Command input.

OINX_MBRNAME X’08’ X’08’ Input Client (IMSplex member) where command

originated.

OINX_MBRTYPE X’10’ X’02’ Input IMSplex member type where command

originated.

OINX_CMDMOD X’12’ X’01’ Output Command input modified field. This field

indicates that the exit modified the command

input string and that the updated command input

should be processed.

v 4 Command input was modified by the exit.

This is the only valid value. All other values

are ignored.

X’13’ X’01’ None Reserved.

OINX_MBRSTYPE X’14’ X’08’ Input IMSplex member subtype where command

originated.

OINX_USERID X’1C’ X’08’ Input user ID of application where the command

originated.

OINX_INPUTLEN X’24’ X’04’ Input Length of the command input string. This length

does not include 80 bytes for command

expansion.

OINX_INPUTPTR X’28’ X’04’ Input Address of the command input string. The

command input string is followed by 80 blanks

that can be used by the exit to expand the

command input.

OINX_INMODLEN X’2C’ X’04’ Output New length of command input string after being

modified by the exit. The exit must set this field

if it modifies the command input string. If the exit

indicates that the command input string was

modified and this field does not contain a value,

the command will be rejected.

OINX_ROUTLLEN X’30’ X’04’ Input Length of the ROUTE list. If this field is zero,

there is no ROUTE list; the default option of

routing to all clients was selected.

OINX_ROUTLPTR X’34’ X’04’ Input Address of the ROUTE list. The ROUTE list

cannot be modified by this exit. The ROUTE list

is a list of client names separated by commas.

The ROUTE list can contain a single asterisk as

a client name, which routes to all clients.

X’38’ X’10’ None Reserved.

Contents of Registers on Exit

 Register Contents

15 Return Code Meaning

Chapter 3. CSL Operations Manager 45

Register Contents

0 Continue command processing

4 Reject the command.

This return code is ignored unless one of the following is true:

v The exit routine is the last routine defined in the exit list for

the input exit.

v The exit routine sets the byte pointed to by

UXPL_CALLNEXTP to the value UXPL_CALLNEXTNO.

All other registers must be restored.

CSL OM Output User Exit

This exit is called to allow a user to view and manipulate output from OM. This exit

is optional.

This exit is called for the following events:

v A command has been processed and is ready to be delivered to the originator of

the command. The exit can modify the command response text before the

response is delivered.

v When an unsolicited message is received from a client (for example, an IMS

control region) using the CSLOMOUT API.

This exit is defined as TYPE=OUTPUT in the EXITDEF statement in the BPE user

exit list PROCLIB member. You can specify one or more user exits of this type.

When this exit is invoked, all user exits of this type are driven in the order specified

by the EXITS= keyword. For more information on how to define user exit module

names, see the OM BPE user exit list PROCLIB member topic in IMS Version 9:

Base Primitive Environment Guide and Reference.

This exit is invoked amode 31 and should be reentrant.

Contents of Registers on Entry

 Register Contents

1 Address of BPE user exit parameter list (mapped by macro BPEUXPL).

13 Address of the first of 2 prechained 72-byte save areas. These save areas

are chained according to standard z/OS save area linkage convention. The

first save area can be used by the exit to save registers on entry. The second

save area is for use by routines called from the user exit.

14 Return address.

15 Entry point of exit routine.

On entry to the Output exit, register 1 points to a standard BPE user exit parameter

list. Field UXPL_EXITPLP in this list contains the address of the OM Output user

exit parameter list, which is mapped by macro CSLOOUX. Field

UXPL_COMPTYPEP in this list points to the character string “OM,” indicating an

OM address space.

OM Output User Exit Parameter List--Command Response: Table 16 on page

47 lists the user exit parameter list for command response. Included are the field

name, the offset value and length, both in hexadecimal, how the field is used, and a

brief description of the field.

46 Common Service Layer Guide and Reference

Table 16. OM Output User Exit Parameter List--Command Response

Field Name Offset Length Field Usage Description

OOUX_PVER X'00' X'04' Input Parameter list version number (00000001).

OOUX_FUNC X'04' X'04' Input Function code

2 Command response.

OOUX_MBRNAME X'08' X'08' Input Client (IMSplex member) name that sent the

command to OM.

OOUX_MBRTYPE X'10' X'02' Input IMSplex member type that sent the command to

OM.

OOUX_OUTMOD X'12' X'01' Output Output modified indicator. This field indicates

that the command output has been modified.

The field should be set to 4 to have OM process

the modified command response; otherwise, set

the field to 0.

v 0 Output was not modified.

v 4 Output modified by the exit.

X'13' X'01' None Reserved.

OOUX_MBRSTYPE X'14' X'08' Input IMSplex member subtype that sent the

command to OM.

OOUX_INPUTLEN X'1C' X'04' Input Length of the command input, if available.

OOUX_INPUTPTR X'20' X'04' Input Address of the command input, if available.

OOUX_OUTPTLEN X'24' X'04' Input Length of the command response.

OOUX_OUTPTPTR X'28' X'04' Input Address of the command response. Command

response output is in XML format wrapped with

the tags <imsout>...</imsout>.

OOUX_OUTMDLEN X'2C' X'04' Output Modified command output length. The exit must

set this field if it modifies the command response

output. This field must not be greater than the

input command response length passed to this

exit. If the exit does not set this field

appropriately and does modify the command

response output, the modified command

response output will not be delivered to the

client. Instead, the original command response

output will be sent to the client.

OOUX_RQTKN1 X'30' X'10' Input Request token 1.

OOUX_RQTKN2 X'40' X'10' Input Request token 2.

OOUX_RETCODE X'50' X'04' Input Return code being sent to the client.

OOUX_RSNCODE X'54' X'04' Input Reason code being sent to the client

X'58' X'10' None Reserved.

OM Output User Exit Parameter List--Undeliverable Output: Table 17 lists the

user exit parameter list for undeliverable output. Included are the field name, the

offset value and length, both in hexadecimal, how the field is used, and a brief

description of the field.

 Table 17. OM Output User Exit Parameter List--Undeliverable Output

Field Name Offset Length Field Usage Description

OOUX_PVER X'00' X'04' Input Parameter list version number (00000001).

Chapter 3. CSL Operations Manager 47

Table 17. OM Output User Exit Parameter List--Undeliverable Output (continued)

Field Name Offset Length Field Usage Description

OOUX_FUNC X'04' X'04' Input Function code

3 Undeliverable command response.

OOUX_MBRNAME X'08' X'08' Input Client (IMSplex member) name sending the

command response.

OOUX_MBRTYPE X'10' X'02' Input IMSplex member type that sending the

command response.

OOUX_OUTMOD X'12' X'01' Output Output modified field. This field indicates that the

exit modified the command response string and

that the updated command response should be

processed.

v 0 Output was not modified.

v 4 Output modified by the exit.

Undeliverable output does not get passed to any

client.

X'13' X'01' None Reserved.

OOUX_MBRSTYPE X'14' X'08' Input IMSplex member subtype sending the command

response.

OOUX_INPUTLEN X'1C' X'04' Input Length of the command input (if available)

OOUX_INPUTPTR X'20' X'04' Input Address of the command input (if available)

OOUX_OUTPTLEN X'24' X'04' Input Length of the command response or 0 if

command response not available.

OOUX_OUTPTPTR X'28' X'04' Input Address of the command response if available. If

the client failed to process the command, the

client has returned only return/reason codes and

no command response. In this case, the

command response length field and this field will

be zero.

OOUX_OUTMDLEN X'2C' X'04' Output Modified command output length. The exit must

set this field if it modifies the command response

output. This field must not be greater than the

input command response length passed to this

exit. If the exit does not set this field

appropriately and does modify the command

response output, the modified command

response output will not be delivered to the

client. Instead, the original command response

output will be sent to the client.

This field is ignored in IMS Version 9.

OOUX_RQTKN1 X'30' X'10' Input Request token 1.

OOUX_RQTKN2 X'40' X'10' Input Request token 2.

OOUX_RETCODE X'50' X'04' Input Return code from client.

OOUX_RSNCODE X'54' X'04' Input Reason code from client.

X'58' X'10' None Reserved.

48 Common Service Layer Guide and Reference

OM Output User Exit Parameter List--Unsolicited Output: Table 18 lists the

user exit parameter list for unsolicited output. Included are the field name, the offset

value and length, both in hexadecimal, how the field is used, and a brief description

of the field.

 Table 18. OM Output User Exit Parameter List--Unsolicited Output

Field Name Offset Length Field Usage Description

OOUX_PVER X'00' X'04' Input Parameter list version number (00000001).

OOUX_FUNC X'04' X'04' Input Function code

4 Unsolicited output message.

OOUX_MBRNAME X'08' X'08' Input Client (IMSplex member) name sending the

message.

OOUX_MBRTYPE X'10' X'02' Input IMSplex member type sending the message.

OOUX_OUTMOD X'12' X'01' Output Output modified field. This field indicates that the

exit modified the output message string and that

the updated output should be passed to the

client.

v 0 Output was not modified.

v 4 Output modified by the exit.

Unsolicited output does not get passed to any

client.

X'13' X'01' None Reserved.

OOUX_MBRSTYPE X'14' X'08' Input IMSplex member subtype sending the message.

X'1C' X'04' None Reserved.

X'20' X'04' None Reserved.

OOUX_OUTPTLEN X'24' X'04' Input Length of the message.

OOUX_OUTPTPTR X'28' X'04' Input Address of the message.

OOUX_OUTMDLEN X'2C' X'04' Output Modified command output length. The exit must

set this field if it modifies the command response

output. This field must not be greater than the

input command response length passed to this

exit. If the exit does not set this field

appropriately and does modify the command

response output, the modified command

response output will not be delivered to the

client. Instead, the original command response

output will be sent to the client.

This field is ignored in IMS Version 9.

OOUX_RQTKN1 X'30' X'10' Input Request token 1.

OOUX_RQTKN2 X'40' X'10' Input Request token 2.

X'50' X'18' None Reserved.

Contents of Registers on Exit

 Register Contents

15 Return Code Meaning

0 Always zero.

Chapter 3. CSL Operations Manager 49

|

|

Register Contents

All other registers must be restored.

CSL OM Security User Exit

Use the OM Security user exit to perform security checking during command

processing. This exit is given control after the OM Input exit. This exit is optional.

This exit is invoked when the CMDSEC= parameter on the OM procedure is

specified as A or E:

A Both this exit and RACF (or equivalent) are used for OM command

security

E Only this exit is called for OM command security

This exit is defined as TYPE=SECURITY in the EXITDEF statement in the BPE user

exit list PROCLIB member. You can specify one or more user exits of this type.

When this exit is invoked, all user exits of this type are driven in the order specified

by the EXITS= keyword. For more information on how to define user exit module

names, see the OM BPE user exit list PROCLIB member topic in IMS Version 9:

Base Primitive Environment Guide and Reference.

This exit is invoked amode 31 and should be reentrant.

Contents of Registers on Entry

 Register Contents

1 Address of BPE user exit parameter list (mapped by macro BPEUXPL).

13 Address of the first of 2 prechained 72-byte save areas. These save areas

are chained according to standard z/OS save area linkage convention. The

first save area can be used by the exit to save registers on entry. The second

save area is for use by routines called from the user exit.

14 Return address.

15 Entry point of exit routine.

On entry to the OM Security exit, register 1 points to a standard BPE user exit

parameter list. Field UXPL_EXITPLP in this list contains the address of the OM

Security user exit parameter list, which is mapped by macro CSLOSCX. Field

UXPL_COMPTYPEP in this list points to the character string “OM,” indicating an

OM address space.

OM Security User Exit Parameter List: Table 19 lists the user exit parameter list

for the security user exit. Included are the field name, the offset value and length,

both in hexadecimal, how the field is used, and a brief description of the field.

 Table 19. OM Security User Exit Parameter List

Field Name Offset Length Field Usage Description

OSCX_PVER X'00' X'04' Input Parameter list version number (00000002).

OSCX_FUNC X'04' X'04' Input Function code

1 Perform user command security checking.

OSCX_MBRNAME X'08' X'08' Input Client (IMSplex member) name that sent the

command to OM.

50 Common Service Layer Guide and Reference

|

Table 19. OM Security User Exit Parameter List (continued)

Field Name Offset Length Field Usage Description

OSCX_MBRTYPE X'10' X'02' Input IMSplex member type that sent the command to

OM.

X'12' X'02' None Reserved.

OSCX_MBRSTYPE X'14' X'08' Input IMSplex member subtype that sent the

command to OM.

OSCX_USERID X'1C' X'08' Input User ID of application where the command

originated.

OSCX_VERB X'24' X'10' Input Command verb.

OSCX_KEYWORD X'34' X'10' Input Primary keyword.

OSCX_INPUTLEN X'44' X'04' Input Length of the command input string.

OSCX_INPUTPTR X'48' X'04' Input Address of the command input string.

OSCX_SECCODE X'4C' X'04' Input Decoded security code.

Only valid when the CMDSEC= parameter on

the OM procedure is specified as A.

v X'00000000': RACF security permits

command.

v X'00000004': RACF security was not

requested.

v X'00000008': RACF security requested, but

RACF is not available.

v X'0000000C': User ID not defined to RACF.

v X'00000010': Command not protected by

RACF.

v X'00000014': User ID is not authorized for the

command.

OSCX_SAFCODE X'50' X'04' Input Security Authorization Facility (SAF) return code.

This is only valid when CMDSEC=A is specified.

OSCX_RETCODE X'54' X'04' Input RACF return code.

This is only valid when CMDSEC=A is specified.

OSCX_RSNCODE X'58' X'04' Input RACF reason code.

This is only valid when CMDSEC=A is specified.

OSCX_USERDATA X'5C' X'20' Output User data. This data is encapsulated by the

<userdata> tags in the <cmdsecerr> section of

the XML output, if this exit has rejected the

command. This user data can contain

alphanumeric characters (A-Z, 0-9), or printable

characters (not case sensitive), with the

exception of the characters &, <, and >. OM will

convert any invalid data placed in this field to

periods (.) before sending the XML output to the

client.

OSCX_ROUTLEN X'7C' X'04' Input The length of the ROUTE list. If this value is

zero (0), no route list exists. The command was

routed to all command processing clients that

were Ready or Registered.

OSCX_ROUTLPTR X'80' X'04' Input The address of the ROUTE list. You cannot use

this exit to modify the ROUTE list.

X'84' X'08' None Reserved.

Chapter 3. CSL Operations Manager 51

|
|
|
|

|
|

|

Contents of Registers on Exit

 Register Contents

15 Return Code Meaning

0 Accept the command for processing.

4 Reject the command due to an unauthorized user ID.

This return code is ignored unless the exit routine is one of the

following:

v The exit routine is the last routine defined in the exit list for

the security exit

v The exit routine sets the byte pointed to by

UXPL_CALLNEXTP to the value UXPL_CALLNEXTNO

All other registers must be restored.

CSL OM Statistics Available through BPE Statistics User Exit

The BPE Statistics user exit can be used to gather both BPE and OM statistics.

Refer to the BPE user exit topic of IMS Version 9: Base Primitive Environment

Guide and Reference for details on the exit and the events that drive it.

This topic describes OM statistics that are:

v available to the BPE Statistics user exit when driven from an OM address space

v returned on a CSLZQRY FUNC=STATS request directed to the OM address space

When the user exit is driven, field BPESTXP_COMPSTATS_PTR in the BPE

Statistics user exit parameter list, BPESTXP, contains the pointer to the OM

statistics header. When the CSLZQRY FUNC=STATS request is made, the OUTPUT=

buffer points to the output area mapped by CSLZQRYO. The output area field

ZQYO_STXOFF contains the offset to the OM statistics header. The header is

mapped by CSLOSTX.

CSL OM Statistics Header

Table 20 lists the OM statistics header. Included are the offset value and length,

both in hexadecimal, how the field is used, and a brief description of the field.

 Table 20. OM Statistics Header

Field Name Offset Length Field Usage Description

OSTX_ID X’00’ X’08’ Input Eyecatcher “CSLOSTX”.

OSTX_LEN X’08’ X’04’ Input Length of header.

OSTX_PVER X’0C’ X’04’ Input Header version number (0000001).

OSTX_PLEXCNT X’10’ X’04’ Input Number of IMSplexes for which statistics are

available.

OSTX_STATCNT X’14’ X’04’ Input Number of statistics areas available for each

IMSplex.

OSTX_STATLEN X’18’ X’04’ Input Length of all statistics areas for each IMSplex.

OSTX_STATOFF X’1C’ X’04’ Input Offset to statistics area for first IMSplex. This is

the offset from the beginning of CSLOSTX. The

offset points to the CSLOST1 area for the first

IMSplex.

52 Common Service Layer Guide and Reference

Table 20. OM Statistics Header (continued)

Field Name Offset Length Field Usage Description

OSTX_OST1OFF X’20’ X’04’ Input Offset to the OM request statistics record for

activity performed by OM requests (mapped by

macro CSLOST1). The offset is from the start of

the statistics area for this IMSplex. Refer to

Table 21 for a description of the OM Request

statistics record.

OSTX_OST2OFF X’24’ X’04’ Input Offset to OM IMSplex statistics record for activity

performed by OM for an IMSplex (mapped by

macro CSLOST2). The offset is from the start of

the statistics area for this IMSplex. Refer to

Table 22 on page 54 for a description of the OM

IMSplex statistics record.

X’28’ X’04’ None Reserved.

X’2C’ X’04’ None Reserved.

CSL OM Statistics Record CSLOST1

CSLOST1 contains statistics related to specific requests and commands that are

processed by OM. Table 21 lists the OM statistics record CSLOST1. Included are

the field names, the offset value and length, both in hexadecimal, how the field is

used, and a brief description of the field.

 Table 21. OM Statistics Record CSLOST1

Field Name Offset Length Field Usage Description

OST1_ID X’00’ X’08’ Input Eyecatcher “CSLOST1”.

OST1_LEN X’08’ X’04’ Input Length of valid data.

OST1_PVER X’0C’ X’04’ Input Statistics version number (00000001).

OST1_OMREG X’10’ X’04’ Input Number of CSLOMREG requests.

OST1_OMRDY X’14’ X’04’ Input Number of CSLOMRDY requests.

X’18’ X’04’ None Reserved.

OST1_OMDRG X’1C’ X’04’ Input Number of CSLOMDRG requests.

OST1_OMDRGIN X’20’ X’04’ Input Number of internal deregister (normal term)

requests.

OST1_OMDRGIA X’24’ X’04’ Input Number of internal deregister (abnormal term)

requests.

OST1_OMICMD X’28’ X’04’ Input Number of CSLOMI command requests.

OST1_OMIQRY X’2C’ X’04’ Input Number of CSLOMI query requests.

X’30’ X’04’ None Reserved.

X’34’ X’04’ None Reserved.

X’38’ X’04’ None Reserved.

X’3C’ X’04’ None Reserved.

OST1_OMCMD X’40’ X’04’ Input Number of CSLOMCMD requests.

OST1_OMQRYCLN X’44’ X’04’ Input Number of CSLOMQRY client requests.

OST1_OMQRYSYN X’48’ X’04’ Input Number of CSLOMQRY syntax requests.

X’4C’ X’04’ None Reserved.

X’50’ X’04’ None Reserved.

Chapter 3. CSL Operations Manager 53

|
|
|
|

Table 21. OM Statistics Record CSLOST1 (continued)

Field Name Offset Length Field Usage Description

X’54’ X’04’ None Reserved.

X’58’ X’04’ None Reserved.

OST1_OMRSP X’5C’ X’04’ Input Number of CSLOMRSP requests.

OST1_OMOUT X’60’ X’04’ Input Number of CSLOMOUT requests.

X’64’ X’04’ None Reserved.

X’68’ X’04’ None Reserved.

X’6C’ X’04’ None Reserved.

X’70’ X’04’ None Reserved.

X’74’ X’04’ None Reserved.

OST1_ZQRY X’78’ X’04’ Input Number of CSLZQRY requests.

OST1_ZSHUT X’7C’ X’04’ Input Number of CSLZSHUT requests.

X’80’ X’04’ None Reserved.

X’84’ X’04’ None Reserved.

X’88’ X’04’ None Reserved.

OST1_QRYIPLX X’8C’ X’04’ Input Number of QRY IMSPLEX commands.

X’90’ X’04’ None Reserved.

X’94’ X’04’ None Reserved.

X’98’ X’04’ None Reserved.

X’9C’ X’04’ None Reserved.

X’A0’ X’04’ None Reserved.

X’A4’ X’04’ None Reserved.

X’A8’ X’04’ None Reserved.

X’AC’ X’04’ None Reserved.

CSL OM Statistics Record CSLOST2

CSLOST2 contains statistics that are related to an IMSplex, but not to a specific

request or command. Table 22 lists the OM statistics record CSLOST2. Included are

the field name, the offset value and length, both in hexadecimal, how the field is

used, and a brief description of the field.

 Table 22. OM Statistics Record CSLOST2

Field Name Offset Length Field Usage Description

OST2_ID X’00’ X’08’ Input Eyecatcher “CSLOST2”.

OST2_LEN X’08’ X’04’ Input Length of valid data.

OST2_PVER X’0C’ X’04’ Input Parameter list version number (00000001).

OST2_PLEXNAME X’10’ X’08’ Input IMSplex name.

OST2_CLIENTS X’18’ X’04’ Input Number of active clients in the IMSplex.

OST2_CMDTOUT X’1C’ X’04’ Input Number of times a command was timed out.

OST2_UNDELIV X’20’ X’04’ Input Number of times a command response output

could not be returned to the client.

X’24’ X’04’ None Reserved.

X’28’ X’04’ None Reserved.

54 Common Service Layer Guide and Reference

|
|
|
|

Table 22. OM Statistics Record CSLOST2 (continued)

Field Name Offset Length Field Usage Description

X’2C’ X’04’ None Reserved.

X’30’ X’04’ None Reserved.

X’34’ X’04’ None Reserved.

X’38’ X’04’ None Reserved.

X’3C’ X’04’ None Reserved.

X’40’ X’04’ None Reserved.

X’44’ X’04’ None Reserved.

X’48’ X’04’ None Reserved.

X’50’ X’04’ None Reserved.

X’54’ X’04’ None Reserved.

X’58’ X’04’ None Reserved.

CSL Automated Operator Program Requests

This topic describes the requests that can be used by AOP clients, for example, the

TSO SPOC.

CSLOMCMD: Command Request

This API can be used by an AOP client application running on the host.

CSLOMCMD Syntax

The syntax for CSLOMCMD can vary depending on what the automated operator

client intends to perform. Parameter descriptions for each syntax example are

provided in “CSLOMCMD Parameters” on page 56.

DSECT Syntax: Use the DSECT function of a CSLOMCMD request to include

equate (EQU) statements in your program for the CSLOMCMD parameter list length

and return and reason codes.

�� CSLOMCMD FUNC=DSECT ��

Request Protocol Syntax: For automation clients that want to wait for the output

from the OM request, use this syntax.

Chapter 3. CSL Operations Manager 55

The response is passed back to the client after the request is completed.

Message Protocol Syntax: For automation clients that want to receive command

output through their user exit, use this syntax.

The response is passed back to the client using the SCI Input exit. The client must

have specified an SCI Input exit (INPUTEXIT=) on the SCI registration request

(CSLSCREG) to receive a response. For more information on the SCI registration

request, see “CSLSCREG: Registration Request” on page 188.

CSLOMCMD Parameters

The CSLOMCMD request parameters follow.

CMD=symbol

CMD=(r2-r12)

(Required) - Specifies the command input buffer. This can be any IMS

�� CSLOMCMD FUNC=COMMAND

ECB=ecb
 CMD=cmdinput CMDLEN=cmdinputlen �

�
OPTION=aopoutput

 OUTPUT=output OUTLEN=outputlen �

�
ROUTE=routelist

ROUTELEN=routelistlen

RQSTTKN1=requesttoken1
 �

�
 TIMEOUT=300

TIMEOUT=timeoutvalue

USERID=userid

PARM=parm
 PROTOCOL=RQST

�

� RETCODE=returncode RSNCODE=reasoncode

RETNAME=returnname
 �

�
RETTOKEN=returntoken

 SCITOKEN=scitoken ��

�� CSLOMCMD FUNC=COMMAND CMD=cmdinput CMDLEN=cmdinputlen �

�
OPTION=aopoutput

ROUTE=routelist

ROUTELEN=routelistlen
 �

�

RQSTTKN1=requesttoken1

 TIMEOUT=300

TIMEOUT=timeoutvalue

USERID=userid

�

� PARM=parm PROTOCOL=MSG RETCODE=returncode RSNCODE=reasoncode �

�
RETNAME=returnname

RETTOKEN=returntoken
 SCITOKEN=scitoken ��

56 Common Service Layer Guide and Reference

|

|

command that can be specified through the OM API. The first character of the

command does not need to be a command recognition character (for example,

/). The command recognition character does not control command routing in

OM. The ROUTE= keyword controls which IMSplex members receive a

command. If a command recognition character is entered in the command string

it is ignored. The first character in the command is considered a command

recognition character if it is not a character between A-Z (either uppercase or

lowercase).

CMDLEN=symbol

CMDLEN=(r2-r12)

(Required) - Specifies the length of the command input buffer.

ECB=symbol

ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS event control block (ECB) used for

asynchronous requests. When the request is complete, the ECB specified is

posted. If an ECB is not specified, the task is suspended until the request is

complete. If an ECB is specified, the invoker of the macro must issue a WAIT

(or equivalent) after receiving control from CSLOMCMD before using or

examining any data returned by this macro (including the RETCODE and

RSNCODE fields).

OPTION=aopoutput

OPTION=(r2-r12)

(Optional) - Use OPTION to return the format ID (FID) in the output from

command processing clients. For example, when a type-1 /DISPLAY command

is sent to an IMS command processing client, you can request that the FID be

returned in each output line. The FID indicates to an AOI program how to map

the line of output. The FID can be useful if you are converting existing AOI

programs to OM AOI programs.

 If OPTION is specified as a register, the register must contain the option value.

For example, the value of AOPOUTPUT is 1. Therefore, the register must

contain a 1.

 The CSLOMCMD request contains the equate for the value of AOPOUTPUT.

OUTLEN=symbol

OUTLEN=(r2-r12)

(Required for RQST) - Specifies a 4-byte field to receive the length of the

output returned by the CSLOMCMD request. OUTLEN contains the length of

the output pointed to by the OUTPUT= parameter.

 The output length is zero if no output is built, for example, if an error is detected

before any output can be built.

OUTPUT=symbol

OUTPUT=(r2-r12)

 (Required for RQST) - Specifies a 4-byte field to receive the address of the

variable length output returned by the CSLOMCMD request. The output

contains the command response output. The output length is returned in the

OUTLEN= field.

 The output address is zero if no output was built, for example, if an error was

detected before any output could be built.

 The output buffer is not preallocated by the caller. After the request returns it,

this word contains the address of a buffer containing the update output. It is the

caller’s responsibility to release this storage by issuing the CSLSCBFR

Chapter 3. CSL Operations Manager 57

|
|
|
|
|
|
|
|

|
|
|

|

FUNC=RELEASE request when it is finished with the storage. The length of the

output is returned in the OUTLEN= field.

PARM=symbol

PARM=(r1-r12)

(Required) - Specifies the CSLOMCMD parameter list. The length of the

parameter list must be equal to the parameter list length EQU value defined by

OCMD_PARMLN.

PROTOCOL=RQST

PROTOCOL=MSG

(Optional) - Specifies the SCI protocol for sending the request to OM.

v RQST - Send command to OM using the SCI request protocol.

v MSG - Send command to OM using the SCI message protocol.

RETCODE=symbol

RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. OM

return codes are defined in CSLORR. SCI return codes are defined in CSLSRR.

Possible return codes are described in Table 23 on page 59.

 The return code can be from OM (CSLOMCMD) or SCI (CSLSCMSG or

CSLSCRQS). If ECB is specified, the RETCODE is not valid until the ECB is

posted. All return codes contain the SCI member type indicator for either SCI,

OM, or RM in the high order byte (X'01' for SCI, X'02' for OM, X'03' for RM).

RETNAME=symbol

RETNAME=(r2-r12)

(Optional) - Specifies an 8-byte output field to receive the OM name. This is the

CSL member name of the target address space to which SCI sent the request.

RETTOKEN=symbol

RETTOKEN=(r2-r12)

(Optional) - Specifies a 16-byte output field to receive the OM SCI token

returned to the caller. This is the OM SCI token for the target address space to

which the request was sent.

ROUTE=symbol

ROUTE=(r2-r12)

(Optional) - Specifies a route list that identifies OM clients (for example, IMS

control regions) in the IMSplex to which the command is sent. To explicitly route

the command to all command processing clients that have registered for and

are ready to process commands, specify ROUTE=*. If you do not specify

ROUTE, OM routes to all clients that are registered and ready to process

commands.

Note: Use commas to separate a list of client names.

ROUTELEN=symbol

ROUTELEN=(r2-r12)

(Optional) - Specifies the length of the list specified in the ROUTE= parameter.

RQSTTKN1=symbol

RQSTTKN1=(r2-r12)

(Optional) - Specifies a 16-byte user generated request token that is used to

associate the request response with the request for asynchronous processing.

RQSTTKN1 can include A-Z, 0-9, or printable characters (not case sensitive),

except &, <, and >. OM returns the request token encapsulated in the

<rqsttkn1></rqsttkn1> tags in the XML output. OM converts any invalid data to

periods (.) before returning XML output to the client. For PROTOCOL=MSG

58 Common Service Layer Guide and Reference

requests, OM also returns the address of this token in the OM Directive

parameter list (mapped by CSLOMDIR macro) in the field ODIR_CQRT1PTR.

This parameter must be 16 bytes and, if necessary, padded with blanks.

 For information on XML output, see Appendix A, “CSL Operations Manager

XML Output,” on page 205. For information on CSLOMDIR, see “CSL OM

Directives” on page 94.

RSNCODE=symbol

RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. OM

reason codes are defined in CSLORR. SCI reason codes are defined in

CSLSRR. Possible reason codes are described in Table 23.

SCITOKEN=symbol

SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token

uniquely identifies this connection to SCI. The SCI token is returned by a

successful CSLSCREG FUNC=REGISTER request.

TIMEOUT=timeoutvalue

TIMEOUT=symbol

TIMEOUT=(r2-r12)

(Optional) - Specifies a 4-byte command timeout value in seconds. If the

TIMEOUT value is reached during OM command processing and before all

clients have responded to the command, OM terminates the command and

returns all available responses. If too small a value is specified, an incomplete

response is returned. The TIMEOUT value ensures a response is returned even

if a client processing the command is unable to respond. The TIMEOUT

keyword is ignored if no CMD keyword is specified. If a command is requested

but no timeout value is specified, a timeout value of 5 minutes is used.

 If TIMEOUT is specified as a symbol, the symbol must be an EQU symbol

equated to the timeout value. If TIMEOUT is specified as a number, the number

must be the timeout value.

USERID=symbol

USERID=(r2-r12)

(Optional) - Specifies the 8-byte user ID that should be used for security

checking for the command and keyword combination. This user ID is used only

if the client address space is an authorized caller. If the client address space is

unauthorized, the user ID is obtained from z/OS control blocks. This user ID is

intended for use by authorized system management address spaces that can

issue an OM request on behalf of another address space or remote client. In

this case, the user ID of the client address space is not the user ID of the

actual client, so it must be passed to OM. This parameter must be 8 bytes,

left-justified, and, if necessary, padded with blanks.

CSLOMCMD Return and Reason Codes

The return are reason codes in Table 23 can be returned on a CSLOMCMD macro

request.

 Table 23. CSLOMCMD Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' The request completed successfully.

Chapter 3. CSL Operations Manager 59

Table 23. CSLOMCMD Return and Reason Codes (continued)

Return Code Reason Code Meaning

X'02000004' Any code This return code indicates a warning. All or part of the

request might have completed successfully. Additional

information is returned with the response to the request.

X'00001000' The command timed out before all of the command

response information could be collected. One or more

clients might not be responding or a client might have

needed more time to process the command. If you

specified the TIMEOUT option, make sure that the

interval is long enough to allow the command to

process. All command response information that is

collected prior to the time-out is returned.

This reason code is also returned if CSL members such

as SCI or RM are not active on the local or remote

z/OS image and cannot process the request or return a

response. To obtain more information, issue QUERY

IMSPLEX to determine which CSL members are

inactive. Restart those members and re-issue the

request.

If this reason code is returned after an INIT OLC or

TERM OLC command, issue QUERY MEMBER to

determine the online change status of the IMS systems

participating in the online change and take action based

on their status.

X'00001004' The INPUT exit rejected the command specified in the

CMD field. The command was not processed.

X'00001008' The client (specified in the corresponding XML

<mbr></mbr> tags in the <cmderr> section) was

specified in the ROUTE list for the command specified

in the CMD field. However, the specified client was

overridden with the ANY option. This option enables

routing to any client that processes commands.

X'0000100C' The client (specified in the corresponding XML

<mbr></mbr> tags in the <cmderr> section) was

specified in the ROUTE list for the command specified

in the CMD field. However, the specified client was

overridden with the ALL option. This option enables

routing to all clients that processes commands.

60 Common Service Layer Guide and Reference

Table 23. CSLOMCMD Return and Reason Codes (continued)

Return Code Reason Code Meaning

X'02000008' Any code This return code indicates a parameter error. The

request was not processed due to the error.

X'00002000' The command specified in the CMD field is invalid.

X'00002004' The command specified in the CMD field contains a

keyword that is invalid with that command.

X'00002028' The command string specified in the CMD field contains

an invalid keyword.

X'0000202C' BPE detected an unknown positional parameter in the

command string specified in the CMD field.

X'00002030' The command string specified in the CMD field contains

a keyword with an equals sign when a sublist was

expected. For example, keyword= was specified instead

of keyword().

X'00002034' The command string specified in the CMD field contains

an incomplete keyword or keyword parameter.

X'00002038' The command string specified in the CMD field is

missing a keyword.

X'0000203C' The command string specified in the CMD field contains

an invalid keyword parameter.

X'00002040' The command string specified in the CMD field contains

a duplicate keyword.

X'00002044' The command contains invalid syntax. Text containing

the syntax error is returned in the

<message></message> XML tags in the error log.

X'00002050' The caller of the service attempted to pass an invalid

parameter list. The request is rejected.

X'0200000C' Any code This return code indicates a list error. The request might

or might not have processed. Refer to the <cmderr>

section and the completion codes for each command

processing client listed in the <cmdrspdata> section.

X'00003000' The command was routed to multiple clients. At least

one client was able to process the request successfully

and return either command response data or a

response message to the SPOC. Refer to the

completion codes, CC field, for further information.

X'00003004' The command was routed to multiple clients. None of

the clients were able to process the request

successfully. No command response data or response

messages were returned.

X'00003008' The command was routed to multiple clients. None of

the clients that processed the command returned a

return code and reason code to the OM. At least one

command client returned either command response

data or a response message.

X'0000300C' The command was routed to multiple clients. Not all of

the clients that processed the command returned a

return code 0 and reason code 0 to the OM. Also, at

least one client returned a return code 4. Refer to the

completion codes returned on the request for additional

information.

Chapter 3. CSL Operations Manager 61

|
|
|
|
|
|

Table 23. CSLOMCMD Return and Reason Codes (continued)

Return Code Reason Code Meaning

X'02000010' Any code This return code indicates an environmental error. The

request could not be processed due to the current

environment. This condition might be temporary.

X'00004000' The command specified in the CMD field could not be

processed by the client indicated in the corresponding

<mbr></mbr> tags in the <cmderr> section because the

client was not yet ready to process commands.

X'00004004' The command specified in the CMD field could not be

processed by the client indicated in the corresponding

XML <mbr></mbr> tags in the <cmderr> section

because the client was not registered for the command.

X'00004008' The command specified in the CMD field could not be

processed by the client indicated in the corresponding

XML <mbr></mbr> tags in the <cmderr> section

because the client is not active in the IMSplex.

X'0000400C' The command specified in the CMD field could not be

processed by the client indicated in the corresponding

XML <mbr></mbr> tags in the <cmderr> section

because the client registered for the command with an

invalid PADEF grammar.

X'00004020' This version of the parameter list is invalid.

X'00004010' The command specified in the CMD field could not be

processed. The client that issued the command is not

authorized. Examine the <cmdsecerr> section in the

error log to determine why the client is not authorized.

62 Common Service Layer Guide and Reference

Table 23. CSLOMCMD Return and Reason Codes (continued)

Return Code Reason Code Meaning

X'02000014' Any code This return code indicates a system error. An internal

error occurred. The command was not processed.

X'00005000' An internal OM error occurred while allocating a CMD

block for processing of the command specified in the

CMD field. Contact the IBM Support Center.

X'00005004' An internal OM error occurred while allocating a CRSP

block to process the command specified in the CMD

field. Contact the IBM Support Center.

X'00005008' An internal OM error occurred while allocating the

command input buffer to process the command

specified in the CMD field. Contact the IBM Support

Center.

X'0000500C' An internal OM error occurred while processing of the

command specified in the CMD field. Contact the IBM

Support Center.

X'00005010' An internal OM error occurred while obtaining storage

for the parsed output blocks to parse the command

specified in the CMD field. Contact the IBM Support

Center.

X'00005014' An internal OM error occurred while adding the CMD

block to the command instance hash table during

processing of the command specified in the CMD field.

Contact the IBM Support Center.

X'00005018' An internal OM error occurred while accessing the CMD

block in the command instance hash table during

processing of the command specified in the CMD field.

Contact the IBM Support Center.

X'0000501C' An internal OM error occurred while scanning for the

CMD block in the command instance hash table during

processing of the command specified in the CMD field.

Contact the IBM Support Center.

X'00005020' An internal OM error occurred while processing the

command specified in the CMD field. The command

was not processed by the command processing client.

See the <cmderr> section of the error log for the

member name of the command processing client, and

contact the IBM Support Center.

X'00005024' An internal OM error occurred while processing the

command specified in the CMD field. The command

was not processed by the command processing client.

See the <cmderr> section for the member name of the

command processing client, and contact the IBM

Support Center.

X'00005028' An internal OM error occurred while parsing the

command specified in the CMD field. Contact the IBM

Support Center.

CSLOMI: API Request

With the CSLOMI request, a z/OS automated operator client can either issue an

IMS command to or request OM-specific information from an OM. The CSLOMI

macro interface is designed for use by system management address spaces that

Chapter 3. CSL Operations Manager 63

receive input from a workstation or other z/OS address space and must pass the

request to OM. In this case the workstation application builds the input string and

passes it to the z/OS address space. The z/OS address space passes the input

string to OM on the INPUT= parameter.

CSLOMI Syntax

The syntax for CSLOMI can vary, depending on how the automated operator client

wants to receive the command response. If the client does not have an input exit

and wants to receive the command output as a response, use the request syntax. If

the client does have an input exit and wants to receive the command output as a

message, use the message syntax. Parameter descriptions for each syntax

example are provided in “CSLOMI Request and Message Parameters” on page 65.

CSLOMI Request Protocol Syntax: For automated clients that want to wait for

output from the OM request, use this syntax.

After control is returned to the client (if ECB is not specified), or the ECB is posted

(if an ECB is specified), the response is available to the client.

CSLOMI Message Protocol Syntax: For automated clients that want to receive

command output through their user exit, use this syntax:

The response is passed back to the client using the SCI Input exit. The client must

have specified an SCI Input exit (INPUTEXIT=) on the SCI registration request

(CSLSCREG) to receive a response. For more information on the SCI registration

request, see “CSLSCREG: Registration Request” on page 188.

�� CSLOMI FUNC=OMAPI

ECB=ecb
 INPUT=input INLEN=inputlen �

� OUTPUT=output OUTLEN=outputlen

USERID=userid
 �

�

RQSTTKN1=requesttoken1

PARM=parm
 PROTOCOL=RQST

RETCODE=returncode

�

� RSNCODE=reasoncode

RETNAME=returnname

RETTOKEN=returntoken
 �

� SCITOKEN=scitoken ��

�� CSLOMI FUNC=OMAPI INPUT=input INLEN=input

USERID=userid
 �

�
RQSTTKN1=requesttoken1

 PARM=parm PROTOCOL=MSG RETCODE=returncode �

� RSNCODE=reasoncode

RETNAME=returnname

RETTOKEN=returntoken
 �

� SCITOKEN=scitoken ��

64 Common Service Layer Guide and Reference

CSLOMI Input= Parameter Syntax: For other applications or workstations that do

not communicate directly with OM, use this syntax.

This syntax is used for the INPUT= parameter. The application builds the command

or query, and passes it to a z/OS address space that communicates with OM

directly.

CSLOMI Request and Message Parameters

The CSLOMI request and message parameters follow. The parameters for the

CSLOMI Input Syntax (shown in “CSLOMI Input= Parameter Syntax”) are described

in “CSLOMI Input= Parameters” on page 67.

ECB=symbol

ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS event control block (ECB) used for

asynchronous requests. When the request is complete, the ECB specified is

posted. If an ECB is not specified, the task is suspended until the request is

complete. If an ECB is specified, the invoker of the macro must issue a WAIT

(or equivalent) after receiving control from CSLOMI before using or examining

any data returned by this macro (including the RETCODE and RSNCODE

fields).

INLEN=symbol

INLEN=(r2-r12)

(Required) - Specifies the length of the input buffer.

INPUT=symbol

INPUT=(r2-r12)

(Required) - Specifies the address of the input buffer.

�� A

B

C

RQSTTKN2(requesttoken2)
 ��

A:

 CMD(command)

OPTION(AOPOUTPUT)

�

(*)

ROUTE

(client)

,

(

client

)

 �

�
(300)

TIMEOUT

(timeoutvalue)

B:

 QUERY(CMDCLIENTS)

C:

 QUERY(CMDSYNTAX)

CMDLANG(cmdlang)

Chapter 3. CSL Operations Manager 65

|

Figure 16 shows an example of the input buffer that is passed to CSLOMI. The

input buffer is the character field MYINPUT and specifies three parameters: a

command string of QRY TRAN SHOW(ALL), a timeout value of 360 seconds, and a

route list consisting of one element, IMSA:

OUTLEN=symbol

OUTLEN=(r2-r12)

(Required for RQST) - Specifies a 4-byte field to receive the length of the

output returned by the CSLOMI request. OUTLEN contains the length of the

output pointed to by the OUTPUT= parameter.

 The output length is zero if no output is built, for example, if an error is detected

before any output can be built.

OUTPUT=symbol

OUTPUT=(r2-r12)

(Required) - Specifies a field to receive the variable length output returned by

the CSLOMI request. The output contains the command response output. The

output length is returned in the OUTLEN= field.

 The output address is zero if no output was built, for example, if an error was

detected before any output could be built.

 The output buffer is not preallocated by the caller. After the request returns it,

this word contains the address of a buffer containing the update output. It is the

caller’s responsibility to release this storage by issuing the CSLSCBFR

FUNC=RELEASE request when it is finished with the storage. The length of the

output is returned in the OUTLEN= field.

PARM=symbol

PARM=(r1-r12)

(Required) - Specifies the CSLOMI parameter list. The length of the parameter

list must be equal to the parameter list length EQU value defined by

OI_PARMLN.

PROTOCOL=RQST

PROTOCOL=MSG

(Optional) - Specifies the SCI protocol for sending the request to OM.

v RQST - Send command to OM using the SCI request protocol.

v MSG - Send command to OM using the SCI message protocol.

RETCODE=symbol

RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. OM

return codes are defined in CSLORR. SCI return codes are defined in CSLSRR.

Possible return codes are described in Table 24 on page 69.

 The return code can be from OM (CSLOMI) or SCI (CSLSCMSG or

CSLSCRQS). If ECB is specified, the RETCODE is not valid until the ECB is

posted. All return codes contain the SCI member type indicator for either SCI,

OM, or RM in the high order byte (X'01' for SCI, X'02' for OM, X'03' for RM).

RETNAME=symbol

CSLOMI FUNC=OMAPI,INPUT=MYINPUT,INLEN=INPUTLEN

INPUTLEN DC A(MYINPUTL)

MYINPUT DC C’CMD (QRY TRAN SHOW(ALL) TIMEOUT(360) ROUTE(IMSA)’

MYINPUTL EQU *-MYINPUT

Figure 16. Sample Input Buffer Passed to CSLOMI

66 Common Service Layer Guide and Reference

RETNAME=(r2-r12)

(Optional) - Specifies an 8-byte output field to receive the OM name. This is the

CSL member name of the target address space to which SCI sent the request.

RETTOKEN=symbol

RETTOKEN=(r2-r12)

(Optional) - Specifies a 16-byte output field to receive the OM SCI token

returned to the caller. This is the OM SCI token for the target address space to

which the request was sent.

RQSTTKN1=symbol

RQSTTKN1=(r2-r12)

(Optional) - Specifies a 16-byte user generated request token that is used to

associate the request response with the request for asynchronous processing.

RQSTTKN1 can include A-Z, 0-9, or printable characters (not case sensitive),

except &, <, and >. OM returns the request token encapsulated in the

<rqsttkn1></rqsttkn1> tags in the XML output. OM converts any invalid data to

periods (.) before returning XML output to the client. For PROTOCOL=MSG

requests, OM also returns the address of this token in the OM Directive

parameter list (mapped by CSLOMDIR macro) in the field ODIR_CQRT1PTR.

This parameter must be 16 bytes and, if necessary, padded with blanks.

 For information on XML output, see Appendix A, “CSL Operations Manager

XML Output,” on page 205. For information on CSLOMDIR, see “CSL OM

Directives” on page 94.

RSNCODE=symbol

RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. OM

reason codes are defined in CSLORR. SCI reason codes are defined in

CSLSRR. Possible reason codes are described in Table 24 on page 69.

SCITOKEN=symbol

SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token

uniquely identifies this connection to SCI. The SCI token is returned by a

successful CSLSCREG FUNC=REGISTER request.

USERID=symbol

USERID=(r2-r12)

(Optional) - Specifies the 8-byte user ID that should be used for security

checking for the command and keyword combination. This user ID is used only

if the client address space is an authorized caller. If the client address space is

unauthorized, the user ID is obtained from z/OS control blocks. This user ID is

intended for use by authorized system management address spaces that can

issue an OM request on behalf of another address space or remote client. In

this case, the user ID of the client address space is not the user ID of the

actual client, so it must be passed to OM. This parameter must be 8 bytes,

left-justified, and, if necessary, padded with blanks.

CSLOMI Input= Parameters

The parameters for the CSLOMI input option are for applications and workstations

that do not communicate directly with OM.

CMD(command)

(Required if QUERY is not specified) - Specifies the command input buffer. This

can be any IMS command that can be specified through the OM API. The first

character of the command does not need to be a command recognition

character (for example, /). The command recognition character does not control

command routing in OM. The ROUTE keyword is used to control which IMSplex

Chapter 3. CSL Operations Manager 67

members receive a command. If a command recognition character is entered in

the command string, it is ignored. The first character in the command is

considered a command recognition character if it is not a character between

A-Z (either uppercase or lowercase).

CMDLANG(cmdlang)

The language to be used for IMS command text that is returned on the request.

This value defaults to the default established for the OM system specified on

the OM startup parameter CMDLANG=. Currently the only accepted value is

ENU for US English. If an invalid language is specified text in the OM default

language is returned.

OPTION(AOPOUTPUT)

(Optional, valid only for CMD()) - Use OPTION to return the format ID (FID) in

the output from command processing clients. For example, when a type-1

/DISPLAY command is sent to an IMS command processing client, you can

request that the FID be returned in each output line. The FID indicates to an

AOI program how to map the line of output. The FID can be useful if you are

converting existing AOI programs to OM AOI programs.

QUERY(querytype)

Type of query to be performed by OM.

CMDCLIENTS

Requests that OM return a list of all clients (for example, IMS control

regions) that have registered to OM for command processing.

 The list of clients is returned encapsulated in <cmdclients> </cmdclients>

tags. querytype can be one of the following.

 <mbr name=membername>

The member name is the name of the client address space.

 <typ> </typ>

The member type is the type of the client address space.

 <styp> </styp>

The member subtype is the subtype of the client address space.

 <vsn> </vsn>

The member version is the version of the client address space.

 <jobname> </jobname>

The client jobname is the jobname or the started task for the client

address space.

 </mbr>

CMDSYNTAX

Requests that OM return a list of the XML representing the command

syntax for selected commands registered with OM. Additionally, the

translatable text associated with the command syntax is returned.

 The command syntax XML is returned encapsulated in <cmdsyntax>

</cmdsyntax> tags. The command syntax DTD is returned encapsulated in

<cmddtd> </cmddtd> tags. The command syntax translatable text is

returned encapsulated in <cmdtext> </cmdtext> tags. For more information

on XML output, see Appendix A, “CSL Operations Manager XML Output,”

on page 205.

ROUTE(routelist)

(Optional) - Specifies a route list that identifies OM clients (for example, IMS

control regions) in the IMSplex to which the command is sent. In the list, the

68 Common Service Layer Guide and Reference

|
|
|
|
|
|
|

clients are separated by commas. To explicitly route the command to all

command processing clients that have registered for and are ready to process

commands, specify ROUTE(*). If you do not specify ROUTE, OM routes to all

clients that are registered and ready to process commands.

RQSTTKN2(requesttoken2)

(Optional) - Specifies a 16-byte user generated request token that is used to

associate the request response with the request for asynchronous processing.

RQSTTKN2 can include A-Z, 0-9, or printable characters (not case sensitive),

except &, <, and >. OM returns the request token encapsulated in the

<rqsttkn2></rqsttkn2> tags in the XML output. OM converts any invalid data to

periods (.) before returning XML output to the originating client. For

PROTOCOL=MSG requests, OM also returns the address of this token in the OM

Directive parameter list (mapped by CSLOMDIR macro) in the field

ODIR_CQRT2PTR.

 For information on XML output, see Appendix A, “CSL Operations Manager

XML Output,” on page 205. For information on CSLOMDIR, see “CSL OM

Directives” on page 94.

TIMEOUT(timeoutvalue)

(Optional) - Specifies a 4-byte command timeout value in seconds. If the

TIMEOUT value is reached during OM command processing before all clients

have responded to the command, OM terminates the command and returns all

available responses. If too small a value is specified, an incomplete response is

returned. The TIMEOUT value ensures a response is returned even if a client

processing the command cannot respond. The TIMEOUT keyword is ignored if

no CMD keyword is specified. If a command is requested but no timeout value

is specified, a timeout value of 5 minutes is used.

CSLOMI Return and Reason Codes

Table 24 lists the return and reason codes that can be returned on a CSLOMI

macro request. Also included is the meaning of a reason code (that is, what

possibly caused it).

 Table 24. CSLOMI Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' The request completed successfully.

Chapter 3. CSL Operations Manager 69

Table 24. CSLOMI Return and Reason Codes (continued)

Return Code Reason Code Meaning

X'02000004' any code This return code represents a warning. All or part of the

request might have completed successfully. Additional

information is returned with the response to the request.

X'00001000' The specified command timed out before all of the

command response information could be collected. One

or more clients might not be responding, or a client

might have needed more time to process the command.

If a TIMEOUT value is specified, ensure the value is

long enough to allow for the command to be processed.

All command response information that is collected

prior to the time-out is returned.

X'00001004' The INPUT exit rejected the command contained in the

CMD field. The command was not processed.

X'00001008' The client (specified in the corresponding XML

<mbr></mbr> tags in the <cmderr> section) was

specified in the ROUTE list for the command specified

in the CMD field. However, the specified client was

overridden with the ANY option. This option enables

routing to any client that processes commands.

X'0000100C' The client (specified in the corresponding XML

<mbr></mbr> tags in the <cmderr> section) was

specified in the ROUTE list for the command specified

in the CMD field. However, the specified client was

overridden with the ALL option. This option enables

routing to all clients that processes commands.

X'00001010' The text file could not be loaded in the language

specified on the CMDLANG parameter. The default

language is used.

70 Common Service Layer Guide and Reference

Table 24. CSLOMI Return and Reason Codes (continued)

Return Code Reason Code Meaning

X'02000008' any code This return code represents a parameter error. The

request was not processed due to the error.

X'00002000' The command specified in the CMD field is invalid.

X'00002004' The primary keyword specified in the CMD field is

invalid with the command specified.

X'00002028' An invalid keyword was specified in the CMD field.

X'0000202C' BPE detected an unknown positional parameter in the

command in the CMD field.

X'00002030' A keyword was specified with an equal sign

(KEYWORD=) when a sublist was expected

(KEYWORD()) in the command in the CMD field.

X'00002034' An incomplete keyword or keyword parameter was

specified in the command in the CMD field.

X'00002038' A keyword is missing from the command in the CMD

field.

X'0000203C' The value of a keyword parameter specified in the

command was invalid.

X'00002040' A duplicate keyword was specified in the command in

the CMD field.

X'00002044' Text containing the syntax error is returned in the XML

<message></message> tags.

X'00002048' More than one filter was specified.

X'00002050' The caller of the service attempted to pass an invalid

parameter list. The request is rejected.

X'0200000C' any code This return code represents a list error. The request

might or might not have been processed due to the

error. Refer to the XML tag <cmderr> section and the

completion codes for each command processing client

listed in the XML tag <cmdrspdata> section.

X'00003000' The command was routed to multiple clients. At least

one client was able to process the request successfully

and return either command response data or a

response message. Refer to the completion codes

returned on the request for further information.

X'00003004' The command was routed to multiple clients. None of

the clients were able to process the request

successfully. No command response data or response

messages were returned by any client.

X'00003008' The command was routed to multiple clients. None of

the clients that processed the command returned a

return code 0 and reason code 0 to OM. At least one

command client returned either command response

data or a response message.

X'0000300C' The command was routed to multiple clients. Not all of

the clients that processed the command returned a

return code 0 and reason code 0 to the OM. Also, at

least one client returned a return code 4. Refer to the

completion codes returned on the request for additional

information.

Chapter 3. CSL Operations Manager 71

|
|
|
|
|
|

Table 24. CSLOMI Return and Reason Codes (continued)

Return Code Reason Code Meaning

X'02000010' any code This return code represents an environmental error. The

request could not be processed at this time due to the

current environment. This condition might be temporary.

X'00004000' The command contained in the CMD field could not be

processed by the client indicated in the corresponding

XML <mbr></mbr> tags in the <cmderr> section

because the client was not yet ready to process

commands.

X'00004004' The command contained in the CMD field could not be

processed by the client indicated in the corresponding

XML <mbr></mbr> tags in the <cmderr> section

because the client was not registered for the command.

X'00004008' The command contained in the CMD field could not be

processed by the client indicated in the corresponding

XML <mbr></mbr> tags in the <cmderr> section

because the client is not active in the IMSplex.

X'0000400C' The command contained in the CMD field could not be

processed by the client indicated in the corresponding

XML <mbr></mbr> tags in the <cmderr> section

because the client registered for the command with

invalid PADEF grammar.

X'00004010' The command contained in the CMD field could not be

processed. The client that issued the command is not

authorized. Examine the <cmdsecerr> section in the

XML file to determine why the client is not authorized.

X'00004014' A data set allocation error occurred; the data set

specified by the CMDTEXT= DSN parameter could not

be allocated.

X'00004018' A data set read error occurred; a member in the data

set specified by the CMDTEXT= DSN could not be

read. The member name is ’CSLOT’ concatenated with

the 3-character CMDLANG value.

X'00004020' The parameter list version is invalid.

72 Common Service Layer Guide and Reference

Table 24. CSLOMI Return and Reason Codes (continued)

Return Code Reason Code Meaning

X'02000014' any code This return code represents a system error. An internal

error occurred, and the command was not processed.

X'00005000' An OM internal error occurred. Due to a storage

shortage, OM was unable to allocate a CMD block to

process the command in the CMD field.

X'00005004' An OM internal error occurred. Due to a storage

shortage, OM was unable to allocate a CRSP block to

process the command in the CMD field.

X'00005008' An OM internal error occurred. Due to a storage

shortage, OM was unable to allocate the command

input buffer to process the command in the CMD field.

X'0000500C' An OM internal error occurred. OM was unable to

obtain the VERB latch while processing the command

in the CMD field.

X'00005010' An OM internal error occurred. Due to a storage

shortage, OM was unable to obtain storage for the

parsed output blocks to parse the command in the

CMD field.

X'00005014' An OM internal error occurred. OM was unable to add

the CMD block to the command instance hash table

while processing the command in the CMD field.

X'00005018' An OM internal error occurred. OM was unable to find

the CMD block in the command instance hash table

while processing the command in the CMD field.

X'0000501C' An OM internal error occurred. OM was unable to scan

for the CMD block in the command instance hash table

while processing the command in the CMD field.

X'00005020' An OM internal error occurred. OM was unable to

obtain a system AWE while processing the command in

the CMD field. The command was not processed by the

command processing client. Refer to the <cmderr>

section in the XML file for the member name of the

command processing client.

Chapter 3. CSL Operations Manager 73

Table 24. CSLOMI Return and Reason Codes (continued)

Return Code Reason Code Meaning

X'02000014'

(continued)

X'00005024' An OM internal error occurred. OM was unable to

queue a system AWE while processing the

commanding the CMD field. The command was not

processed by the command processing client. Refer to

the <cmderr> section of the XML file for the member

name of the command processing client.

X'00005028' An OM internal error occurred. OM was unable to parse

the command contained in the CMD field due to a

BPEPARSE internal error.

X'0000502C' An OM internal error occurred. The command output

header allocation failed.

X'00005030' An OM internal error occurred. The command output

response allocation failed.

X'00005034' An OM internal error occurred. The OUTPUT buffer

allocation failed.

X'00005038' An OM internal error occurred. The VERB hash table

add failed.

X'0000503C' An OM internal error occurred. The CLNT block could

not be obtained.

X'00005040' An OM internal error occurred. The CSLSCQRY

request failed.

CSLOMQRY: Query Request

With the CSLOMQRY request, any AOP client running on the host can request

OM-specific information.

CSLOMQRY Syntax

The syntax for CSLOMQRY can vary depending on what the automated operator

client intends to perform. Parameter descriptions for each syntax example are

provided in “CSLOMQRY Parameters” on page 75.

DSECT Syntax: Use the DSECT function of a CSLOMQRY request to include

equate (EQU) statements in your program for the CSLOMQRY parameter list length

and return and reason codes.

Request Protocol Syntax: For automation clients that want to wait for the output

from the OM request, use this syntax.

�� CSLOMQRY FUNC=DSECT ��

74 Common Service Layer Guide and Reference

The response is passed back to the client after the request is completed.

Message Protocol Syntax: For automation clients that want to send a message

to OM to process an OM request, use this syntax.

The response is passed back to the client using the SCI Input exit. The client must

have specified an SCI Input exit (INPUTEXIT=) on the SCI registration request

(CSLSCREG) to receive a response. For more information on the SCI registration

request, see “CSLSCREG: Registration Request” on page 188.

CSLOMQRY Parameters

The CSLOMQRY parameters follow.

CMDLANG=cmdlang

(Optional) - The language to be used for IMS command text that is returned on

the request. This value defaults to the default established for the OM system

specified on the OM startup parameter CMDLANG=. Currently the only

accepted value is ENU for US English. If an invalid language is specified in OM,

the default language is returned.

ECB=symbol

ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS event control block (ECB) used for

asynchronous requests. When the request is complete, the ECB specified is

posted. If an ECB is not specified, the task is suspended until the request is

complete. If an ECB is specified, the invoker of the macro must issue a WAIT

�� CSLOMQRY FUNC=QUERY OUTPUT=output OUTLEN=outputlen

ECB=ecb
 �

�
RQSTTKN1=requesttoken1

 TYPE= CMDCLIENTS

CMDSYNTAX

CMDLANG=cmdlang

 �

�

PARM=parm
 PROTOCOL=RQST

RETCODE=returncode

RSNCODE=reasoncode

�

�
RETNAME=returnname

RETTOKEN=returntoken
 SCITOKEN=scitoken ��

�� CSLOMQRY FUNC=QUERY

RQSTTKN1=requesttoken1
 �

� TYPE= CMDCLIENTS

CMDSYNTAX

CMDLANG=cmdlang

 PARM=parm PROTOCOL=MSG �

� RETCODE=returncode RSNCODE=reasoncode

RETNAME=returnname
 �

�
RETTOKEN=returntoken

 SCITOKEN=scitoken ��

Chapter 3. CSL Operations Manager 75

(or equivalent) after receiving control from CSLOMQRY before using or

examining any data returned by this macro (including the RETCODE and

RSNCODE fields).

OUTLEN=symbol

OUTLEN=(r2-r12)

(Required for RQST) - Specifies a 4-byte field to receive the length of the

output returned by the CSLOMQRY request. OUTLEN contains the length of

the output pointed to by the OUTPUT= parameter.

 The output length is zero if no output is built, for example, if an error is detected

before any output can be built.

OUTPUT=symbol

OUTPUT=(r2-r12)

(Required) - Specifies a field to receive the variable length output returned by

the CSLOMQRY request. The output contains the command response output.

The output length is returned in the OUTLEN= field.

 The output address is zero if no output was built, for example, if an error was

detected before any output could be built.

 The output buffer is not preallocated by the caller. After the request returns it,

this word contains the address of a buffer containing the update output. It is the

caller’s responsibility to release this storage by issuing the CSLSCBFR

FUNC=RELEASE request when it is finished with the storage. The length of the

output is returned in the OUTLEN= field.

PARM=symbol

PARM=(r1-r12)

(Required) - Four-byte input parameter that specifies the address of the storage

used by the request to pass the parameters to SCI. The length of the parameter

list must be equal to the parameter list length EQU value defined by

OQRY_PARMLN.

PROTOCOL=RQST

PROTOCOL=MSG

(Optional) - Specifies the SCI protocol for sending the request to OM.

v RQST - Send command to OM using the SCI request protocol.

v MSG - Send command to OM using the SCI message protocol.

RETCODE=symbol

RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. OM

return codes are defined in CSLORR. SCI return codes are defined in CSLSRR.

Possible return codes are described in Table 25 on page 78.

 The return code can be from OM (CSLOMQRY) or SCI (CSLSCMSG or

CSLSCRQS). If ECB is specified, the RETCODE is not valid until the ECB is

posted. All return codes contain the SCI member type indicator for either SCI,

OM, or RM in the high order byte (X'01' for SCI, X'02' for OM, X'03' for RM).

RETNAME=symbol

RETNAME=(r2-r12)

(Optional) - Specifies an 8-byte output field to receive the OM name. This is the

CSL member name of the target address space to which SCI sent the request.

RETTOKEN=symbol

76 Common Service Layer Guide and Reference

RETTOKEN=(r2-r12)

(Optional) - Specifies a 16-byte output field to receive the OM SCI token

returned to the caller. This is the OM SCI token for the target address space to

which the request was sent.

RQSTTKN1=symbol

RQSTTKN1=(r2-r12)

(Optional) - Specifies a 16-byte user generated request token that is used to

associate the request response with the request for asynchronous processing.

RQSTTKN1 can include A-Z, 0-9, or printable characters (not case sensitive),

except &, <, and >. OM returns the request token encapsulated in the

<rqsttkn1></rqsttkn1> tags in the XML output. OM converts any invalid data to

periods (.) before returning XML output to the client. For PROTOCOL=MSG requests,

OM also returns the address of this token in the OM directive parameter list

(mapped by CSLOMDIR macro) in the field ODIR_CQRT1PTR. This parameter

must be 16 bytes and, if necessary, padded with blanks.

 For information on XML output, see Appendix A, “CSL Operations Manager

XML Output,” on page 205. For information on CSLOMDIR, see “CSL OM

Directives” on page 94.

RSNCODE=symbol

RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. OM

reason codes are defined in CSLORR. SCI reason codes are defined in

CSLSRR. Possible reason codes are described in Table 25 on page 78.

SCITOKEN=symbol

SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token

uniquely identifies this connection to SCI. The SCI token is returned by a

successful CSLSCREG FUNC=REGISTER request.

TYPE=CMDCLIENTS

TYPE=CMDSYNTAX

(Required) - Four-byte input parameter that specifies the type of query to be

performed by OM.

CMDCLIENTS

Requests that OM return a list of all clients (for example, IMS control

regions) that have registered to OM for command processing.

 The clients are returned encapsulated in <cmdclients> </cmdclients> tags.

 <mbr name=“membername”>

The member name is the name of the client address space.

 <typ> </typ>

The member type is the type of the client address space.

 <styp> </styp>

The member subtype is the subtype of the client address space.

 <vsn> </vsn>

The member version is the version of the client address space.

 <jobname> </jobname>

The client jobname is the jobname or the started task for the client

address space.

 </mbr>

Chapter 3. CSL Operations Manager 77

For more information on XML output, see Appendix A, “CSL Operations

Manager XML Output,” on page 205.

CMDSYNTAX

Requests that OM return a list of the XML representing the command

syntax for selected commands registered with OM. Additionally, the

translatable text associated with the command syntax is returned.

 The command syntax XML is returned encapsulated in <cmdsyntax>

</cmdsyntax> tags. The command syntax DTD is returned encapsulated in

<cmddtd> </cmddtd> tags. The command syntax translatable text is

returned encapsulated in <cmdtext> </cmdtext> tags.

 The command syntax and translatable text that is returned as a result of the

CSLOMQRY QUERY TYPE(CMDSYNTAX) request includes information for

type-2 commands.

CSLOMQRY Return and Reason Codes

Table 25 lists the return and reason code combinations that can be returned on a

CSLOMQRY request and that are unique to the CSLOMQRY request. Also included

is the meaning of a reason code (that is, what possibly caused it).

 Table 25. CLSOMQRY Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' The request completed successfully.

X'02000004' any code This return code represents a warning. All or part of the

request might have completed successfully. Additional

information is returned with the response to the request.

X'00001010' The text file could not be loaded in the language

specified on the CMDLANG parameter. The default

language is used.

X'02000008' X'00002050' The caller of the service attempted to pass an invalid

parameter list. The request is rejected.

X'02000010' any code This return code represents an environmental error. The

request could not be processed at this time due to the

current environment. This condition might be temporary.

X'00004014' A data set allocation error occurred; the data set

specified by the CMDTEXTDSN= parameter in the OM

Initialization PROCLIB member (CSLOIxxx) could not

be allocated.

X'00004018' A data set read error occurred; a member in the data

set specified by the CMDTEXTDSN= parameter in the

OM Initialization PROCLIB member (CSLOIxxx) could

not be read. The member name is ’CSLOT’

concatenated with the 3-character CMDLANG value.

X'00004020' The parameter list version is invalid.

CSL OM Command Processing Client Requests

This topic describes the requests made by command processing clients.

If you are writing your own command processing client, ensure that the access

authority you provide on the RACF PERMIT command matches the access

authority with which the command is registered.

78 Common Service Layer Guide and Reference

|
|
|

The following topics provide additional information:

v “CSLOMBLD: Command Registration Build”

v “CSLOMDRG: Command Deregistration Request” on page 81

v “CSLOMOUT: Unsolicited Output Request” on page 82

v “CSLOMRDY: Ready Request” on page 84

v “CSLOMREG: Command Registration Request” on page 85

v “CSLOMRSP: Command Response Request” on page 88

CSLOMBLD: Command Registration Build

CSLOMBLD is used to build the command list that is passed to OM on the

CSLOMREG request. This list:

v identifies the commands for which the IMS system can be called.

v is comprised of a set of statements starting with a CSLOMBLD FUNC=BEGIN

statement and ending with a CSLOMBLD FUNC=END statement

Any number of CSLOMBLD FUNC=DEFVRB statements can be provided, each one

defining the command verb. Following each DEFVRB statement are CSLOMBLD

FUNC=DEFKEY statements, which identify keywords valid for the previously

defined command verb.

The set of CSLOMBLD statements can be defined either in a separate data-only

assembler module, or in a static data section of an executable assembler module.

Refer to the documentation in the CSLOMBLD macro.

CSLOMBLD is used to build the command registration list; it does not have an input

parameter list.

CSLOMBLD Syntax

The syntax for the set of CSLOMBLD statements follows.

CSLOMBLD BEGIN: Use the BEGIN function statement to identify the beginning

of the set of command statements.

�� CSLOMBLD FUNC=BEGIN ��

CSLOMBLD DEFVRB: Use the DEFVRB function statement to identify a

command that the OM client or IMS system will support. You can specify a short

form of the command verb.

�� CSLOMBLD FUNC=DEFVRB VERB=verbname NORM=shortverbname ��

CSLOMBLD DEFKEY: Use the DEFKEY function statement to identify a keyword

that is valid for the previously defined command. You can also specify command

routing and required RACF authorization with this statement.

�� CSLOMBLD FUNC=DEFKEY KEYW=keyword ROUTE=ANY|ALL SEC=READ|UPDATE ��

Refer to “Overriding CSL OM Command Routing with the ROUTE Parameter” on

page 81 for information on the ROUTE parameter. Refer to “CSL OM Command

Security” on page 39 for information on the SEC parameter.

Chapter 3. CSL Operations Manager 79

CSLOMBLD DEFGMR: Use the DEFGMR function statement to identify the

beginning of the statements that describe the output parsing grammar.

Note: This function is for internal IBM use only.

�� CSLOMBLD FUNC=DEFGMR ��

CSLOMBLD ENDGMR: Use the ENDGMR function statement to designate the

end of the statements that describe the output parsing grammar.

Note: This function is for internal IBM use only.

�� CSLOMBLD FUNC=ENDGMR ��

CSLOMBLD END: Use the END function statement to designate the end of the

list of command statements.

�� CSLOMBLD FUNC=END ��

CSLOMBLD Parameters

The CSLOMBLD parameters follow.

KEYW=keyword

Specifies a valid keyword for the command verb that immediately precedes this

parameter. For a null keyword, use blanks; for example, ’KEYW= ’. This

parameter is required for FUNC=DEFKEY.

NORM=shortverbname

Specifies the short form of the command being defined. This parameter is

required for FUNC=DEFVRB.

ROUTE=ANY | ALL

Specifies the override routing for the command being defined. This parameter is

required for FUNC=DEFKEY. For more information on this parameter, see

“Overriding CSL OM Command Routing with the ROUTE Parameter” on page

81.

SEC=READ | UPDATE

Specifies the required RACF authorization for KEYW. This parameter is

required for FUNC=DEFKEY. For more information on this parameter, see “CSL

OM Command Security” on page 39.

VERB=verbname

Specifies the long form of the command being defined. This parameter is

required for FUNC=DEFVRB.

CSLOMBLD Example

Figure 17 shows an example of a set of CSLOMBLD statements.

 CSLOMBLD FUNC=BEGIN

 CSLOMBLD FUNC=DEFVRB,VERB=ACTIVATE,NORM=ACT

 CSLOMBLD FUNC=DEFKEY,KEYW=LINK,SEC=UPDATE

 CSLOMBLD FUNC=DEFKEY,KEYW=NODE,SEC=UPDATE

 CSLOMBLD FUNC=END

Figure 17. CSLOMBLD Example Statements

80 Common Service Layer Guide and Reference

|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

Overriding CSL OM Command Routing with the ROUTE

Parameter

CSLOMBLD allows the command processing client to override the routing that you

specify when you enter a command. There are a few commands that specify

command routing overrides. OM overrides command routing when two command

processing clients specify different routing overrides for the same command if:

v At least one command processing client specifies an override of ROUTE=ALL,

then OM routes the command to all registered command processing clients.

v At least one command processing client specifies an override of ROUTE=ANY,

and no command processing client has specified ROUTE=ALL, then OM routes

the command to one of the registered command processing clients.

v No command processing clients have specified an override of ROUTE=ALL or

ROUTE=ANY, then OM routes the command as specified by the user that

entered the command.

For more information on commands, see IMS Version 9: Command Reference.

CSLOMDRG: Command Deregistration Request

With the CSLOMDRG request, a command processing client like the IMS control

region tells OM that it no longer wants to process commands, for example, when

the client address space is terminating. The deregister request removes all client

information from the OM command registration tables and stops OM from sending

further commands to the client.

CSLOMDRG Syntax

The syntax for the CSLOMDRG request follows.

DSECT Syntax: Use the DSECT function of a CSLOMDRG request to include

equate (EQU) statements in your program for the CSLOMDRG parameter list length

and return and reason codes.

�� CSLOMDRG FUNC=DSECT ��

Request Protocol Syntax:

�� CSLOMDRG FUNC=DEREGISTER PARM=parm RETCODE=returncode �

� RSNCODE=reasoncode SCITOKEN=scitoken ��

CSLOMDRG Parameters

The parameters for CSLOMDRG follow.

PARM=symbol

PARM=(r1-r12)

(Required) - Specifies the CSLOMDRG parameter list. The length of the

parameter list must be equal to the parameter list length EQU value defined by

ODRG_PARMLN.

RETCODE=symbol

RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. OM

return codes are defined in CSLORR. SCI return codes are defined in CSLSRR.

Possible return codes are described in Table 26 on page 82.

Chapter 3. CSL Operations Manager 81

The return code can be from OM (CSLOMDRG) or SCI (CSLSCMSG or

CSLSCRQS). If ECB is specified, the RETCODE is not valid until the ECB is

posted. All return codes contain the SCI member type indicator for either SCI,

OM, or RM in the high order byte (X'01' for SCI, X'02' for OM, X'03' for RM).

RSNCODE=symbol

RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. OM

reason codes are defined in CSLORR. SCI reason codes are defined in

CSLSRR. Possible reason codes are described in Table 26.

SCITOKEN=symbol

SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token

uniquely identifies this connection to SCI. The SCI token is returned by a

successful CSLSCREG FUNC=REGISTER request.

CSLOMDRG Return and Reason Codes

The return and reason codes in Table 26 can be returned on a CSLOMDRG macro

request. Also included is the meaning of a reason code (that is, what possibly

caused it).

 Table 26. CLSOMDRG Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' The request completed successfully.

CSLOMOUT: Unsolicited Output Request

The CSLOMOUT request is issued by a command processing client that wants to

send a message not directly in response to a command. The message can be

additional information as a result of a command issued after the initial command

response is returned to OM; or it can be an informational message as a result of an

event in the system. OM sends the unsolicited message to the OM Output user exit.

CSLOMOUT Syntax

The syntax examples for the CSLOMOUT request follow.

DSECT Syntax: Use the DSECT function of a CSLOMOUT request to include

equate (EQU) statements in your program for the CSLOMOUT parameter list length

and return and reason codes.

�� CSLOMOUT FUNC=DSECT ��

82 Common Service Layer Guide and Reference

Request Protocol Syntax:

CSLOMOUT Parameters

The parameters for the CSLOMOUT request follow.

CMD=symbol

CMD=(r2-r12)

(Optional) - Specifies the command input buffer. This can be any IMS command

that can be specified through the OM API. This parameter represents the

original command input.

CMDLEN=symbol

CMDLEN=(r2-r12)

(Optional) - Specifies the length of the command input buffer.

MSGDATA=symbol

MSGDATA=(r2-r12)

(Required) - Specifies the command response message buffer.

MSGDATALEN=symbol

MSGDATALEN=(r2-r12)

(Required) - Specifies the length of the command response message buffer.

OMNAME=symbol

OMNAME=(r2-r12)

(Optional) - Specifies the 8-byte OM name to which to send the unsolicited

output message when the message is an asynchronous response to a

command.

RQSTTKN=symbol

RQSTTKN=(r2-r12)

(Optional) - Specifies the 32-byte request token that was passed to the

command processing client on an OM command directive. This represents the

RQSTTKN1 and RQSTTKN2 fields that are entered on either or both the

CSLOMI and CSLOMCMD requests.

PARM=symbol

PARM=(r1-r12)

(Required) - Specifies the CSLOMOUT parameter list. The length of the

parameter list must be equal to the parameter list length EQU value defined by

ORDY_PARMLN.

RETCODE=symbol

RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. OM

return codes are defined in CSLORR. SCI return codes are defined in CSLSRR.

Possible return codes are described in Table 27 on page 84.

�� CSLOMOUT FUNC=MESSAGE

CMD=cmdinput

CMDLEN=cmdinputlen
 �

� MSGDATA=msgdata MSGDATALEN=msgdatalen

OMNAME=omname
 �

�
RQSTTKN=requesttoken

 PARM=parm RETCODE=returncode RSNCODE=reasoncode �

� SCITOKEN=scitoken ��

Chapter 3. CSL Operations Manager 83

The return code can be from OM (CSLOMOUT) or SCI (CSLSCMSG or

CSLSCRQS). If ECB is specified, the RETCODE is not valid until the ECB is

posted. All return codes contain the SCI member type indicator for either SCI,

OM, or RM in the high order byte (X'01' for SCI, X'02' for OM, X'03' for RM).

RSNCODE=symbol

RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. OM

reason codes are defined in CSLORR. SCI reason codes are defined in

CSLSRR. Possible reason codes are described in Table 27.

SCITOKEN=symbol

SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token

uniquely identifies this connection to SCI. The SCI token is returned by a

successful CSLSCREG FUNC=REGISTER request.

CSLOMOUT Return and Reason Codes

The return and reason codes in Table 27 can be returned on a CSLOMOUT macro

request. “CSLOMI Return and Reason Codes” on page 69 lists the return and

reason codes that can be returned on a CSLOMI macro request. Also included is

the meaning of a reason code (that is, what possibly caused it).

 Table 27. CLSOMOUT Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' The request completed successfully.

CSLOMRDY: Ready Request

With the CSLOMRDY request, command processing clients like the IMS control

region notify OM that they are ready to process commands. OM does not send

commands to a client until this request is processed.

CSLOMRDY Syntax

The syntax for the CSLOMRDY request follows.

CSLOMRDY DSECT Syntax: Use the DSECT function of a CSLOMRDY request

to include equate (EQU) statements in your program for the CSLOMRDY parameter

list length and return and reason codes.

�� CSLOMRDY FUNC=DSECT ��

CSLOMRDY Request Protocol Syntax:

�� CSLOMRDY FUNC=READY

OMNAME=omname

MASTER=NO|YES
 PARM=parm �

� RETCODE=returncode RSNCODE=reasoncode SCITOKEN=scitoken ��

CSLOMRDY Parameters

The parameters for CSLOMRDY follow.

MASTER=NO

MASTER=YES

(Optional) - Specifies whether or not the client should be chosen as the

84 Common Service Layer Guide and Reference

|
|
|
|

||

|||

|||
|

|

command master. If a client specifies MASTER=YES, OM can select that client

to be the command master. If the client specifies MASTER=NO, OM selects it

to be the command master only if no other client has specified MASTER=YES.

 For more information on how OM chooses an IMS command master, see IMS

Version 9: Command Reference.

OMNAME=symbol

OMNAME=(r2-r12)

(Optional) - Specifies the 8-byte OM name to which to send the command

ready request. If an OM name is not specified, the ready request is sent to all

OM address spaces registered in the IMSplex.

PARM=symbol

PARM=(r1-r12)

(Required) - Specifies the CSLOMRDY parameter list. The length of the

parameter list must be equal to the parameter list length EQU value defined by

ORDY_PARMLN.

RETCODE=symbol

RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. OM

return codes are defined in CSLORR. SCI return codes are defined in CSLSRR.

Possible return codes are described in Table 28.

 The return code can be from OM (CSLOMRDY) or SCI (CSLSCMSG or

CSLSCRQS). If ECB is specified, the RETCODE is not valid until the ECB is

posted. All return codes contain the SCI member type indicator for either SCI,

OM, or RM in the high order byte (X'01' for SCI, X'02' for OM, X'03' for RM).

RSNCODE=symbol

RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. OM

reason codes are defined in CSLORR. SCI reason codes are defined in

CSLSRR. Possible reason codes are described in Table 28.

SCITOKEN=symbol

SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token

uniquely identifies this connection to SCI. The SCI token is returned by a

successful CSLSCREG FUNC=REGISTER request.

CSLOMRDY Return and Reason Codes

Table 28 lists the return and reason codes that can be returned on a CSLOMRDY

macro request. Also included is the meaning of the reason code (that is, what

possibly caused it).

 Table 28. CLSOMRDY Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' The request completed successfully.

CSLOMREG: Command Registration Request

With the CSLOMREG request, a command processing client, such as the IMS

control region, can register commands with an OM. The registration tells OM which

commands a client can process. CSLOMREG must be the first request that a

command processing client issues to OM. A command processing client must

register with all OM address spaces in the IMSplex. If a client is registered with only

one OM in an IMSplex, and that OM goes down, the client’s commands are not

Chapter 3. CSL Operations Manager 85

|
|
|

routed to another OM in the IMSplex. Use the CSLSCQRY request to obtain the

names of all OMs in the IMSplex. The client must be authorized to issue a

CSLOMREG request. This authorization is from SCI, which notifies OM that the

client can issue requests.

CSLOMREG Syntax

The syntax examples for CSLOMREG follow.

CSLOMREG DSECT Syntax: Use the DSECT function of a CSLOMREG request

to include equate (EQU) statements in your program for the CSLOMREG parameter

list length and return and reason codes.

�� CSLOMREG FUNC=DSECT ��

CSLOMREG Request Protocol Syntax: The syntax for the CSLOMREG request

follows.

CSLOMREG Parameters

The parameters for CSLOMREG follow:

CMDLIST=symbol

CMDLIST=(r2-r12)

(Required) - Specifies the command definition list.

 The command list is built using the CSLOMBLD macro. Refer to “CSLOMBLD:

Command Registration Build” on page 79 for more information.

CMDLISTLEN=symbol

CMDLISTLEN=(r2-r12)

(Required) - Specifies the length of the command definition list buffer.

ECB=symbol

ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS event control block (ECB) used for

asynchronous requests. When the request is complete, the ECB specified is

posted. If an ECB is not specified, the task is suspended until the request is

complete. If an ECB is specified, the invoker of the macro must issue a WAIT

(or equivalent) after receiving control from CSLOMREG before using or

examining any data returned by this macro (including the RETCODE and

RSNCODE fields).

OMNAME=symbol

OMNAME=(r2-r12)

(Required) - Specifies the 8-byte OM name to which to send the command

registration request.

OUTLEN=symbol

�� CSLOMREG FUNC=REGISTER CMDLIST=cmdlistaddr CMDLISTLEN=cmdlistlen �

�
ECB=ecbaddress

 OMNAME=omnameaddr �

�
OUTPUT=outputaddr

OUTLEN=outputlen
 PARM=parmaddr �

� RETCODE=returncodeaddr RSNCODE=reasoncodeaddr SCITOKEN=scitokenaddr ��

86 Common Service Layer Guide and Reference

OUTLEN=(r2-r12)

(Optional) - Specifies a 4-byte field to receive the length of the output returned

by the CSLOMREG request. OUTLEN contains the length of the output pointed

to by the OUTPUT= parameter.

 The output length is zero if no output is built, for example, if an error is detected

before any output can be built.

OUTPUT=symbol

OUTPUT=(r2-r12)

(Required) - Specifies a field to receive the variable length output returned by

the CSLOMREG request. The output length is returned in the OUTLEN= field.

 The output is mapped by the CSLOREGO macro and is built only if there was

an error registering one or more commands. The output contains a header and

one or more list entries. Refer to the CSLOREGO macro for the output fields.

 The output address is zero if no output was built, for example, if an error was

detected before any output could be built.

 The output buffer is not preallocated by the caller. After the request returns it,

this word contains the address of a buffer containing the update output. It is the

caller’s responsibility to release this storage by issuing the CSLSCBFR

FUNC=RELEASE request when it is finished with the storage. The length of the

output is returned in the OUTLEN= field.

PARM=symbol

PARM=(r1-r12)

(Required) - Four-byte input parameter that specifies the address of the storage

used by the request to pass the parameters to SCI. The length of the parameter

list must be equal to the parameter list length EQU value defined by

OREG_PARMLN.

RETCODE=symbol

RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. OM

return codes are defined in CSLORR. SCI return codes are defined in CSLSRR.

Possible return codes are described in Table 29 on page 88.

 The return code can be from OM (CSLOMREG) or SCI (CSLSCMSG or

CSLSCRQS). If ECB is specified, the RETCODE is not valid until the ECB is

posted. All return codes contain the SCI member type indicator for either SCI,

OM, or RM in the high order byte (X'01' for SCI, X'02' for OM, X'03' for RM).

RSNCODE=symbol

RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. OM

reason codes are defined in CSLORR. SCI reason codes are defined in

CSLSRR. Possible reason codes are described in Table 29 on page 88.

SCITOKEN=symbol

SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token

uniquely identifies this connection to SCI. The SCI token is returned by a

successful CSLSCREG FUNC=REGISTER request.

CLSOMREG Return and Reason Codes

The return and reason codes in Table 29 on page 88 can be returned on a

CSLOMREG macro request. Completion codes from CSLOMREG are in Table 30

on page 88.

Chapter 3. CSL Operations Manager 87

Table 29. CLSOMREG Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' The request completed successfully.

X'0200000C' X'00003000' The request might or might not have been processed

completely. If the OUTPUT parameter is provided on

the request, refer to completion codes in the output

buffer for error conditions. Completion codes indicate

the reason for the error with the resource name. The

completion codes that can be returned are described in

Table 30.

X'02000010' X'00004010' The client that issued the command is not authorized.

X'00004020' The parameter list version is invalid.

X'02000014' X'00005034' An OM internal error occurred. OM was unable to

obtain storage for the output buffer.

X'00005038' An OM internal error occurred. OM was unable to add

the VERB block to the command verb hash table during

command processing.

X'0000503C' An OM internal error occurred. OM was unable to

allocate a CLNT block for the client during command

processing.

The completion codes in Table 30 can be returned on a CSLOMREG request. They

are returned in the ORGE_CC field of the CSLOREGO macro, which maps the

OUTPUT= area if an error occurred during command registration.

 Table 30. CLSOMREG Completion Codes

Completion Code Meaning

X'00000104' OM was unable to allocate a VERB block for the resource.

X'00000108' OM was unable to allocate a KWD block for the resource.

X'0000010C' OM was unable to allocate an MUID block for the resource.

X'00000160' OM was unable to obtain a latch for the resource.

CSLOMRSP: Command Response Request

A command processing client issues the CSLOMRSP request in response to a

command. All command response information from an individual command

processing client is consolidated by the client and sent to OM in one request. OM

consolidates the responses from multiple clients into one response for the

automated operator program client.

CSLOMRSP Syntax

The syntax examples for the CSLOMRSP request follow.

CSLOMRSP DSECT Syntax: Use the DSECT function of a CSLOMRSP request

to include equate (EQU) statements in your program for the CSLOMRSP parameter

list length and return and reason codes.

�� CSLOMRSP FUNC=DSECT ��

88 Common Service Layer Guide and Reference

CSLOMRSP Request Protocol Syntax:

CSLOMRSP Parameters

The parameters for the CSLOMRSP request follow.

CMD=symbol

CMD=(r2-r12)

 (Optional) - Specifies the command input buffer. This can be any IMS command

that can be specified through the OM API.

 This parameter is optional; what you provide here will be included in the input

tags that are returned as XML output. See Appendix A, “CSL Operations

Manager XML Output,” on page 205 for additional information.

CMDDATA=symbol

CMDDATA=(r2-r12)

(Optional) - Specifies the command response data buffer.

CMDDATALEN=symbol

CMDDATALEN=(r2-r12)

(Optional) - Specifies the length of the command response data buffer.

CMDHDR=symbol

CMDHDR=(r2-r12)

(Optional) - Specifies the command response header buffer.

CMDHDRLEN=symbol

CMDHDRLEN=(r2-r12)

(Optional) - Specifies the length of the command response header buffer.

CMDLEN=symbol

CMDLEN=(r2-r12)

(Optional) - Specifies the length of the command input buffer.

CMDTOKEN=symbol

CMDTOKEN=(r2-r12)

(Required) - Specifies a 32-byte field to contain the command token. This token

uniquely identifies the command instance that the client has processed. The

command token is passed to the client on an OM command directive. The

address of the token is passed to the client in the ODIR_CMDTKPTR field in

the OM command directive parameter list.

MSGDATA=symbol

MSGDATA=(r2-r12)

(Optional) - Specifies the command response message buffer.

MSGDATALEN=symbol

MSGDATALEN=(r2-r12)

(Optional) - Specifies the length of the command response message buffer.

�� CSLOMRSP FUNC=RESPOND

CMD=cmdinput

CMDLEN=cmdinputlen
 CMDTOKEN=cmdtoken �

�
CMDHDR=cmdhdr

CMDHDRLEN=cmdhdrlen

CMDDATA=cmddata

CMDDATALEN=cmddatalen
 �

�
MSGDATA=msgdata

MSGDATALEN=msgdatalen
 PARM=parm OMNAME=omname �

� RETCODE=returncode RSNCODE=reasoncode RQSTRC=requestrc RQSTRSN=requestrsn �

�
RQSTTKN=requesttoken

 SCITOKEN=scitoken ��

Chapter 3. CSL Operations Manager 89

PARM=symbol

PARM=(r1-r12)

(Required) - Four-byte input parameter that specifies the address of the storage

used by the request to pass the parameters to SCI. The length of the parameter

list must be equal to the parameter list length EQU value defined by

ORSP_PARMLN.

OMNAME=symbol

OMNAME=(r2-r12)

(Required) - Specifies the 8-byte OM name to which to send the command

registration request.

RETCODE=symbol

RETCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. OM

return codes are defined in CSLORR. SCI return codes are defined in CSLSRR.

Possible return codes are described in Table 31 on page 91.

 The return code can be from OM (CSLOMRSP) or SCI (CSLSCMSG or

CSLSCRQS). If ECB is specified, the RETCODE is not valid until the ECB is

posted. All return codes contain the SCI member type indicator for either SCI,

OM, or RM in the high order byte (X'01' for SCI, X'02' for OM, X'03' for RM).

RQSTRC=symbol

RQSTRC=(r2-r12)

(Required) - Specifies a 4-byte field to contain the reason code to be passed to

the originator of the command. This reason code is defined by the command

processing client and indicates the result of the command. Non-zero reason

codes are passed back to the client in the <cmderr> section of the command

response.

RQSTRSN=symbol

RQSTRSN=(r2-r12)

(Required) - Specifies a 4-byte field to contain the reason code to be passed to

the originator of the command. This reason code is defined by the command

processor client and indicates the result of the command. Non-zero reason

codes are passed back to the client in the <cmderr> section of the command

response.

RQSTTKN=symbol

RQSTTNK=(r2-r12)

(Optional) - Specifies the 32-byte request token that was passed to the

command processing client on an OM command directive. This parameter

represents the RQSTTKN1 and RQSTTKN2 fields that are entered on either or

both the CSLOMI and CSLOMCMD requests.

RSNCODE=symbol

RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. OM

reason codes are defined in CSLORR. SCI reason codes are defined in

CSLSRR. Possible reason codes are described in Table 31 on page 91.

SCITOKEN=symbol

SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token

uniquely identifies this connection to SCI. The SCI token is returned by a

successful CSLSCREG FUNC=REGISTER request.

90 Common Service Layer Guide and Reference

|
|
|
|

CSLOMRSP Return and Reason Codes

Table 31 lists the return and reason codes that can be returned on a CSLOMRSP

macro request. Also included is the meaning of the reason code (that is, what

possibly caused it).

 Table 31. CLSOMRSP Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' The request completed successfully.

CSL OM Automated Operator Program Clients

OM provides an application programming interface (API) for application programs

that automate operator actions. These programs are called automated operator

programs (AOP). An AOP issues commands that are embedded in an OM API

request to an OM. The responses to those commands are returned to the AOP

embedded in XML tags. See “CSL OM XML Output” on page 93 for more

information on XML output.

If you want to use OM to manage commands and command responses in an

IMSplex for your own product or service, you can use an AOP client, such as:

v The IMS-supplied AOP client, TSO single point of control (SPOC), which runs on

the host. With the TSO SPOC, an automated operator can issue commands to

the IMSplex and receive responses to those commands interactively.

v An AOP client that runs on a workstation (called a workstation SPOC).

v The IMS Control Center, an IMS system management application that performs

SPOC functions.

v A command processing client, such as IMS.

Each of these clients is described in this topic.

An OM client uses OM requests to communicate with OM. Each OM client must

register to SCI before it can issue OM requests.

If you intend to write AOPs, you can write them in either assembler or REXX.

Assembler applications issue requests to the OM API; REXX applications issue

REXX host commands to communicate with OM.

IMS provides a REXX SPOC API, which is a REXX program interface to a SPOC

application. Your existing REXX applications can use this REXX SPOC API to

interact with OM.

How AOP Clients that Run on the Host Communicate with the CSL OM

AOP clients that run on the host can communicate directly with OM. After a z/OS

AOP is registered with SCI, it can issue OM command (CSLOMCMD) or query

(CSLOMQRY) requests. When the z/OS AOP is ready to terminate, it must

deregister with SCI using the CSLSCDRG macro. Each of the requests can be sent

directly to OM or SCI. For more information on how to issue an SCI request, see

“CSL SCI Requests” on page 171.

Table 32 on page 92 lists the sequence of requests that are issued from an AOP

that is running on the host. The request is listed with its purpose.

Chapter 3. CSL Operations Manager 91

|

Table 32. Sequence of requests for AOP running on the host

Request Purpose

CSLSCREG Registers to SCI, which enables the client to send OM requests to OM

through SCI.

CSLSCRDY Readies the OM client to SCI, which routes messages to the client by

client type.

CSLOMxxx Issues OM requests (CSLOMCMD, CSLOMQRY) to send commands to

OM.

CSLSCBFR Releases the output buffer returned by the request, if any.

CSLSCQSC Quiesces with SCI.

CSLSCDRG Deregisters from SCI.

Note: Although not required for an AOP executing on the host, CSLSCRDY and

CSLSCQSC are recommended for clients that want to receive messages

routed by TYPE.

An OM client uses OM requests to access and use OM services and resources.

Some SCI and OM requests must be issued by the client to request OM services.

Some of those requests must be issued in a particular sequence, as shown in

Table 32. Other requests can be issued multiple times, in any order, based on the

processing requirements of the client.

How AOP Clients that Run on a Workstation Communicate with the

CSL OM

A workstation AOP client cannot communicate directly with OM. Instead, it must

communicate with a z/OS address space that acts as an OM AOP client.

Instead of issuing CSLOMCMD or CSLOMQRY requests, the z/OS address space

issues CSLOMI, which passes the prebuilt string that it received from the

workstation to OM. For example, if the workstation wants to query the command

processing clients to see how many exist in the IMSplex, it can send the string

QUERY(CMDCLIENTS) to the z/OS address space, which would then use CSLOMI

to send the query to OM for command processing.

If the workstation wants to issue a QRY TRAN command to the IMSplex, it can

send the following string to the z/OS address space:

CMD(QUERY TRAN NAME) ROUTE(IMSA) TIMEOUT(10) RQSTTKN2(QTRANCMD)

The z/OS address space would then use CSLOMI to send the string to OM for

command processing. The z/OS address space should pass the user ID associated

with the workstation application to ensure correct authorization processing by OM.

Table 33 illustrates the sequence of requests issued from an AOP executing on

z/OS and communicating directly with OM for the workstation. The request is listed

with its purpose.

 Table 33. Sequence of requests for AOP running on the workstation

Request Purpose

CSLSCREG Registers to SCI, which enables the client to send OM requests to OM

through SCI.

92 Common Service Layer Guide and Reference

Table 33. Sequence of requests for AOP running on the workstation (continued)

Request Purpose

CSLSCRDY Readies the OM client to SCI, which routes messages to the client by

client type.

CSLOMI Issues OM requests (CMD(), QUERY()) to send commands to OM.

CSLSCBFR Releases the output buffer returned by the request, if any.

CSLSCQSC Quiesces with SCI.

CSLSCDRG Deregisters from SCI.

Note: Although not required for an AOP executing on the workstation, CSLSCRDY

and CSLSCQSC are recommended for clients that want to receive

messages routed by TYPE.

Command Processing Clients and the CSL OM

A command processing client, such as an IMS control region, is a system that

provides a command processor to accept and process commands entered by an

AOP.

A command processing client must register to OM in addition to registering with

SCI. The command processing client registers with OM by passing a list of

commands to OM that it can process.

After successful command registration, the client must inform OM that it is ready to

process commands.

Like the AOP clients, command processing clients must issue requests in a

particular sequence. This sequence, and the purpose of the request, is listed in

Table 34.

 Table 34. Sequence of requests for a command processing client

Request Purpose

CSLSCREG Registers to SCI, which enables the client to send OM requests to OM

through SCI.

CSLSCRDY Readies the OM client to SCI, which routes messages to the client by

client type.

CSLOMREG Registers the command list to OM.

CSLOMRDY Readies OM client to OM. Client is now ready to process commands.

CSLOMRSP Sends the command response output back to OM after receiving and

processing a command from OM.

CSLOMDRG Deregisters from OM. The client no longer wants to process commands.

CSLSCQSC Quiesces with SCI.

CSLSCDRG Deregisters from SCI.

CSL OM XML Output

Command responses that are returned through the OM API are embedded in XML

tags. XML output is generated for responses to the CSLOMI, CSLOMCMD, and

CSLOMQRY requests.

Chapter 3. CSL Operations Manager 93

For example, with the CSLOMI request, the QUERY parameter allows you to query

all clients that are registered to OM. The clients are returned embedded in

<cmdclients></cmdclients> tags.

The list of XML tags and the descriptions of each tag are provided in Appendix A,

“CSL Operations Manager XML Output,” on page 205.

CSL OM Directives

An OM directive is a function that OM defines that can be sent as a message to

OM clients, informing the OM clients of work to be processed. Any command

processing client that has registered commands to OM can be selected to perform

an OM directive.

OM directives are always issued in message protocol (PROTOCOL=MSG), that is,

asynchronously; OM therefore expects no response from the OM client, and it

continues processing without waiting for a response. The OM client is responsible

for determining whether or not to take any action in response to the directive.

When a client issues PROTOCOL=MSG, SCI sends the XML output from OM to the

client’s SCI Input exit. The SCI Input exit routine’s INXP_MBRPLPTR field points to

the CSLOMDIR parameter list. For more information on the SCI Input exit

parameter list, see “CSL SCI Input Exit Parameter List” on page 164.

When a client issues CSLOMI PROTOCOL=RQST, the XML output stream from

OM is sent directly to the client in the OUTPUT= parameter.

The SCI Input exit routine is responsible for notifying the client of the directive. The

client should code their SCI Input exit routine to support OM directives. The client is

responsible for determining where the function and function code are to be defined.

After the client is finished using the CSLOMDIR parameter list, it must release the

storage by issuing CSLSCBFR.

OM directives are defined in the CSLOMDIR macro, which includes:

v Command directive (ODIR_CMDD)

v CSLOMI response directive (ODIR_OMIRESPD)

v Command response directive (ODIR_CMDRESPD)

v Query response directive (ODIR_QRYRESPD)

The directives and their parameters are described in this topic.

CSL OM Command Directive

The OM command directive, ODIR_CMDD, is sent to a command processing client

when a command is available for processing.

The parameters for the OM command directive follow. They are passed to the SCI

Input Exit:

ODIR_COMMAND

Identifies the start of the command directive.

ODIR_CMDTKLEN=length

Contains the length of the OM command token. It is used only by OM to identify

the command instance.

94 Common Service Layer Guide and Reference

ODIR_CMDTKPTR=address

Contains the address of the OM command token.

ODIR_INPUTLEN=length

Contains the length of the command input string that you enter.

ODIR_INPUTPTR=address

Contains the address of the command input string.

ODIR_VERBLEN=length

Contains the length of the command verb in normalized form.

ODIR_VERBPTR=address

Contains the address of the command verb.

ODIR_KWDLEN=length

Contains the length of the command keyword.

ODIR_KWDPTR=address

Contains the address of the command keyword.

ODIR_PARSELEN=length

Contains the length of the parsed command block.

ODIR_PARSEPTR=address

Contains the address of the parsed command block.

ODIR_CUIDLEN=length

Contains the length of the user ID that originated the command.

ODIR_CUIDPTR=address

Contains the address of the user ID that originated the command.

ODIR_CNAMELEN=length

Contains the length of the name of the client that originated the command (that

is, the name that was registered to SCI).

ODIR_CNAMEPTR=address

Contains the address of the name of the client that originated the command

(that is, the name that was registered to SCI).

ODIR_CTYPE=client type

Contains the type of client that originated the command. This is the value from

the TYPE= parameter as defined to SCI. This parameter is passed by value;

the length field is always zero.

ODIR_CSTYPLEN=length

Contains the subtype of the client that originated the command. This is the

value from the SUBTYPE= parameter as defined to SCI.

ODIR_CSTYPPTR=address

Contains the address of the subtype of the client that originated the command.

ODIR_CFLAGS=flags

Contains the OM command processing flags. These parameters are passed by

value; the length field is always zero.

ODIR_CRQTKLEN=length

Contains the length of the user request token; this parameter is used only by

the program that originated the command to identify the command instance.

ODIR_CRQTKPTR=address

Contains the address of the user request token; this parameter is used only by

the program that originated the command to identify the command instance.

Chapter 3. CSL Operations Manager 95

ODIR_TIMEOUT=timeoutvalue

Contains the command timeout value as specified on the command. This

parameter is passed by value; the length field is always zero.

ODIR_CMDLN

The command directive length EQU.

CSL OM Response Directives

There are three response directives in CSLOMDIR:

v CSLOMI response (ODIR_OMIRESPD)

The CSLOMI response directive returns a response to a client regarding a

CSLOMI call. The response is sent when an error occurs and it is unclear if the

response is for a CSLOMI CMD or CSLOMI QUERY call.

v Command response (ODIR_CMDRESPD)

The command response directive returns a command response to a client that

results from a CSLOMI CMD or CSLOMCMD call.

v Query response (ODIR_QRYRESPD)

The query response directive returns a query response to a client that results

from a CSLOMI QUERY or CSLOMQRY call.

The parameters for the OM response directives are identical.

ODIR_CQRESP

Identifies the start of the command or query response.

ODIR_CQRSPRC=returncode

Contains the return code of the command or query response.

ODIR_CQRSPRSN=reasoncode

Contains the reason code of the command or query response.

ODIR_CQXMLLEN=length

Contains the length of the XML output being returned.

ODIR_CQXMLPTR=address

Contains the address of the XML output being returned.

ODIR_CQRT1LEN=length

Contains the length of request token 1 (RQSTTKN1).

ODIR_CQRT1PTR=address

Contains the address of request token 1 (RQSTTKN1).

ODIR_CQRT2LEN=length

Contains the length of request token 2 (RQSTTKN2).

ODIR_CQRT2PTR=address

Contains the address of request token 2 (RQSTTKN2).

ODIR_CQRSPLN

The response directive length EQU.

96 Common Service Layer Guide and Reference

Chapter 4. CSL Resource Manager

These topics describe the role of RM in a CSL:

v “Overview of the CSL Resource Manager”

v “CSL RM Definition and Tailoring” on page 99

v “CSL RM Administration” on page 104

v “CSL RM User Exit Routines” on page 105

v “Writing a CSL RM Client” on page 111

v “CSL RM Requests” on page 112

v “CSL RM Directives” on page 145

Overview of the CSL Resource Manager

RM is an IMS address space that manages global resources and IMSplex-wide

processes in a sysplex on behalf of its clients. IMS is one example of an RM client

that uses RM to manage:

v global message destination and terminal resources

v global online change

Clients communicate with RM using RM requests. Requests used to manage global

resources include:

v “CSLRMDEL: Delete Resources” on page 113

v “CSLRMDRG: Deregister Clients” on page 117

v “CSLRMQRY: Query Resources” on page 131

v “CSLRMREG: Register Clients” on page 136

v “CSLRMUPD: Update Resources” on page 140

Requests used to manage IMSplex-wide processes in a sysplex include:

v “CSLRMPRI: Process Initiate” on page 118

v “CSLRMPRR: Process Respond” on page 121

v “CSLRMPRS: Process Step” on page 123

v “CSLRMPRT: Process Terminate” on page 129

Using these requests, RM clients can either communicate with RM and manipulate

global resources, or participate in IMSplex-wide processes.

With RM, the system administrator can manage resources that are shared by

multiple IMS systems in an IMSplex. RM provides an infrastructure for managing

global resources and coordinating processes across the IMSplex.

RM uses Common Queue Server (CQS) to maintain global resource information in

a resource structure, which is a coupling facility list structure that all CQSs in the

IMSplex can access.

Recommendation: Although a resource structure is optional in an IMSplex, it is

recommended that you define a resource structure for improved recovery

capabilities.

RM also supports coordinated processes across the IMSplex. For example, IMS

uses this support to coordinate global online change across the IMSplex. For this

activity, OM is also required.

© Copyright IBM Corp. 2002, 2005 97

At least one RM must be defined in an IMSplex to use RM functions. You can have

one or more RMs on each z/OS image if a resource structure is defined. If no

resource structure is defined, you can have only one RM. If you do not require RM

functions, you can configure your IMS system without an RM, specifying RMENV=N

on the DFSCGxxx PROCLIB member. Any RM can process work from any z/OS

image within an IMSplex. For more information on CSL configurations, see “CSL

Configuration Examples” on page 7.

Maintaining Global Resource Information with the CSL RM

RM uses CQS to store global resource information on a coupling facility list

structure that all RMs can access. This structure is called a resource structure. You

can use RM to create, update, query, or delete resources in the resource structure.

To display information about the resource structure managed by RM, use the

QUERY STRUCTURE command. More information on this command is in IMS

Version 9: Command Reference.

RM works with CQS to access the resource structure for the client. RM issues the

requests to query and maintain the resources, and it notifies the client if there is a

resource structure change that affects the client.

The IMSs in the IMSplex still contain the resource definitions. RM does not ensure

resource definition consistency across the IMSplex. You can use global online

change to update the resource definitions in the IMSs.

RM’s Stored Resource Information

RM maintains the following information about resources on a resource structure:

Resource Name

A client-defined resource name that is 11 bytes in length.

Name Type

A resource attribute that ensures that all resources within the same type have

unique names. RM enforces this rule. Resources within a name type can have

different resource types.

Resource Type

A client-defined resource attribute that allows CQS to physically group

resources on a coupling facility list structure. RM supports up to 255 resource

types.

 RM uses resource type 253 to store its global information. Resource type 253

hashes to the same physical list headers as resource types 11, 22, 33,

44,...253. A client can define resource types that map to the same physical list

headers as RM’s global information.

Resource Version

The number of times that the resource has been updated. RM uses the version

to serialize updates on the resource structure.

Resource Owner

A resource attribute that signifies the owner of the resource. This attribute is

optional.

 If the owner is identified, the client is responsible for enforcing a single owner of

a resource. For example, IMS can set owners for the following resources to

enforce a single active instance of the resources: nodes, lterms, users, and

user IDs. A user or user ID that is signed on to one IMS in the IMSplex cannot

98 Common Service Layer Guide and Reference

|
|
|

be signed on to another IMS in the IMSplex at the same time. An lterm that is

active on one IMS in the IMSplex cannot be active on another IMS in the

IMSplex at the same time.

Resource Data

A resource attribute that contains any additional data about the resource.

Resource Structure Duplexing Requirements for CSL RM

CQS does not log resource updates or support a checkpoint of the resource

structure. However, CQS supports automatic duplexing of the resource structure for

backup in case of structure failure. You must define the resource structure in the

coupling facility resource management (CFRM) policy to automatically be duplexed

if you want the resource structure to be recoverable.

How the CSL RM Repopulates a Resource Structure

If the resource structure and its duplex (if applicable) fail, and CQS can allocate a

new structure, CQS notifies RM to repopulate the structure. RM repopulates the

structure from information in its local control blocks. RM then issues a directive to

its clients to populate the structure. For information on RM directives, see “CSL RM

Directives” on page 145.

If the resource structure fails, and CQS cannot allocate a new structure, CQS

notifies RM that the structure failed. RM then issues a directive to its clients that the

structure failed. Any RM or IMS resource that existed only on the resource structure

is lost. When a new resource structure is allocated, the clients can choose to

coordinate the repopulation of the resource structure.

How z/OS Rebuilds a Resource Structure

Resource structures are defined with system-managed rebuild, so z/OS

automatically rebuilds the structure when no CQS is up to build the structure. z/OS

cannot rebuild the structure if the structure fails or if z/OS loses connectivity to the

structure. If any CQS is up and rebuild is initiated with the SETXCF START,REBUILD

command, then CQS copies the structure. If the structure fails, no structure

recovery is initiated because resource structures do not support structure

checkpoint.

CSL RM Definition and Tailoring

This topic describes the how to define and tailor RM in an IMSplex. You can tailor

the following procedures:

v “CSL RM Startup Procedure”

v “CSL RM Execution Parameters” on page 100

v “CSL RM Initialization Parameters PROCLIB Member” on page 101

v “BPE Considerations for the CSL RM” on page 103

You can also use the BPE user exit list PROCLIB member to define the BPE user

exit routines to include in RM. See IMS Version 9: Base Primitive Environment

Guide and Reference for information on the BPE user exit list PROCLIB member.

CSL RM Startup Procedure

Use the RM startup procedure to dynamically override the settings in the RM

initialization parameters PROCLIB member. You can start RM as a started

Chapter 4. CSL Resource Manager 99

procedure or with JCL. A sample startup procedure, shown in Figure 18, is called

CSLRM and can be found in IMS.PROCLIB.

CSL RM Execution Parameters

This topic describes the parameters that can be specified as execution parameters

on the RM startup procedure. Some parameters that are required for RM

initialization can also be specified in the RM initialization parameters PROCLIB

member.

��

ARMRST=
 Y

N

BPECFG=mbrname

BPEINIT=CSLRINI0

RMINIT=suffix

�

� RMNAME=rmmbrname ��

ARMRST= Y | N

Specifies whether or not the z/OS Automatic Restart Manager (ARM) should be

used to restart RM after an abend. Y (yes) specifies that ARM should be used.

//**

//* RM Procedure

//*

//*

//* Parameters:

//* BPECFG - Name of BPE member

//* RMINIT - Suffix for your CSLRIxxx member

//* PARM1 - other override parameters:

//* ARMRST - Indicates if ARM should be used

//* RMNAME - Name of RM being started

//*

//* example:

//* PARM1=’ARMRST=Y,RMNAME=RM1’

//*

//***@SCPYRT**

//* *

//* Licensed Materials - Property of IBM *

//* *

//* "Restricted Materials of IBM" *

//* *

//* 5655-J38 (C) Copyright IBM Corp. 2003 *

//* *

//***@ECPYRT**

//*

//CSLRM PROC RGN=3000K,SOUT=A,

// RESLIB=’IMS.SDFSRESL’,

// BPECFG=BPECONFG,

// RMINIT=000,

// PARM1=

//*

//RMPROC EXEC PGM=BPEINI00,REGION=&RGN,

// PARM=’BPECFG=&BPECFG,BPEINIT=CSLRINI0,RMINIT=&RMINIT,&PARM1’

//*

//STEPLIB DD DSN=&RESLIB,DISP=SHR

// DD DSN=SYS1.CSSLIB,DISP=SHR

//PROCLIB DD DSN=IMS.PROCLIB,DISP=SHR

//SYSPRINT DD SYSOUT=&SOUT

//SYSUDUMP DD SYSOUT=&SOUT

//*

Figure 18. Sample Resource Manager Startup Procedure

100 Common Service Layer Guide and Reference

The RM address space is restarted by ARM after most system failures. N (no)

specifies that ARM should not be used. RM is not restarted by ARM after any

failures.

 This is an optional execution parameter. If specified, it overrides the value

specified in the CSLRIxxx PROCLIB member. If not specified, the value in the

CSLRIxxx PROCLIB member is used.

 For information on ARM, see “Using the z/OS Automatic Restart Manager with

the CSL” on page 29.

BPECFG=

Specifies an 8-character name for the BPE configuration parameters PROCLIB

member. This parameter can be specified only as an execution parameter. The

parameter is optional. If it is not specified, the BPE defaults are used:

v No BPE user exits

v A BPE trace level of ERROR

v The language used for BPE messages is US English

For more information on this parameter, see IMS Version 9: Base Primitive

Environment Guide and Reference.

BPEINIT=CSLRINI0

Specifies the name of the module that contains the RM start up values required

by BPEINI00 to start an RM address space. For RM, this value must be

CSLRINI0. This parameter can be specified only as an execution parameter.

This is a required parameter.

RMINIT=

Specifies a 3-character suffix for the RM initialization parameters PROCLIB

member, CSLRIxxx. This parameter can be specified only as an execution

parameter. The default suffix is 000.

RMNAME=rmmbrname

Specifies the name for the RM address space. This is an optional 1-6 character

name. If specified, it overrides the value specified in the CSLRIxxx PROCLIB

member. You must specify this parameter either as an execution parameter or

in the CSLRIxxx PROCLIB member. This name is used to create the RMID,

which is used in RM processing. The 8-character RMID is the RMNAME

followed by the characters “RM”. Trailing blanks in the RMNAME are deleted,

and the RMID is padded with blanks. For example, if RMNAME=ABC then

RMID=“ABCRM ”.

CSL RM Initialization Parameters PROCLIB Member

Use the CSLRIxxx PROCLIB member to specify parameters that initialize RM.

Some parameters within CSLRIxxx can be overridden with RM execution

parameters.

The CSLRIxxx PROCLIB member consists of one or more fixed-length character

records (the configuration data set can be of any LRECL greater than eight, but it

must be fixed record format). The rightmost-eight columns are ignored but can be

used for sequence numbers or any other notation. Keyword parameters can be

coded in the remaining columns in free format, and can contain leading and trailing

blanks. You can specify multiple keywords in each record; use commas or spaces

to delimit keywords. Statements that begin with a “*” or “#” in column 1 are

comment lines and are ignored. Additionally, comments can be included anywhere

within a statement by enclosing them between “ /* ”and “*/”, for example, /*

Chapter 4. CSL Resource Manager 101

PROCLIB comments */. Values coded in this PROCLIB member are case-sensitive. In

general, you should use upper case for all parameters.

ARMRST= Y | N

Specifies whether or not the z/OS Automatic Restart Manager (ARM) should be

used to restart RM after an abend. Y (yes) specifies that ARM should be used.

The RM address space is restarted by ARM after most system failures. N (no)

specifies that ARM should not be used. RM is not restarted by ARM after any

failures. For information on ARM, see “Using the z/OS Automatic Restart

Manager with the CSL” on page 29.

CQSSSN=

Specifies the one- to four-character subsystem name of the CQS. RM uses this

name to connect to the proper CQS. When connecting RM to CQS, you must

specify the same value on CQSSSN= and on the SSN= parameter of the

CQSIPxxx PROCLIB member for the target CQS. The parameter is optional,

and no default exists. Both CQSSSN and RSRCSTRUCTURE must be

specified together, or neither must be specified. CQSSSN and

RSRCSTRUCTURE must be specified to make use of RM’s global resource

services.

IMSPLEX()

Specifies definitions for an IMSplex managed by RM. IMSPLEX is a required

parameter. There is no default. Only one IMSPLEX keyword can be specified.

The IMSPLEX keyword must precede the left parenthesis. The IMSPLEX

definition parameters follow:

NAME=

Specifies a 1-5 character identifier that specifies the IMSplex group

name. This defines the IMSplex to which the resource structure is

defined. NAME is required and no default exists. RM concatenates this

identifier to “CSL” to create the IMSplex group name. All OM, RM, SCI,

IMS, and IMSplex members that are in the same IMSplex sharing group

sharing either databases or message queues must specify the same

identifier. The same identifier must also be used for the IMSPLEX=

parameter in the CSLSIxxx, CSLOIxxx and DFSCGxxx PROCLIB

members.

RSRCSTRUCTURE()

Specifies definitions for a resource structure managed by RM. This

keyword construct is optional. RSRCSTRUCTURE must be specified to

make use of RM’s global resource services. Only one resource

structure can be defined. The resource structure definitions must be

enclosed within parentheses and separated by commas. The

RSRCSTRUCTURE keyword must precede the left parenthesis.

STRNAME=

Specifies the 1- to 16-character name of a resource structure

that IMS connects to, which contains IMS resource information.

If the RSRSTRUCTURE construct is specified, then STRNAME

is required within the RSRCSTRUCTURE construct.

 The installation must have defined the structure name in the

CFRM administrative policy. The structure name must follow the

naming rules as allowed by the CFRM. The structure name

must be from 1 to 16 characters long. For names with less than

16 characters, CQS pads the name with blanks. The valid

characters are A-Z, 0-9 and the characters $, &, # or _. Names

must be uppercase and start with an alphabetic character. To

102 Common Service Layer Guide and Reference

avoid using names IBM uses for its structures, do not begin

structure names with the letters A-I, or the character string SYS.

This resource structure must also be defined in the CQS global

structure definition PROCLIB member (CQSSGxxx) of the CQS

in the same IMSplex sharing group. This resource structure

must also be defined in the CFRM policy.

RMNAME=rmmbrname

Specifies the name for the RM address space. This is an optional 1- to

6-character name. You must specify this parameter either as an execution

parameter or in the CSLRIxxx PROCLIB member. This name is used to create

the RMID, which is used in RM processing. The 8-character RMID is the

RMNAME followed by the characters “RM”. Trailing blanks in the RMNAME are

deleted, and the RMID is padded with blanks. For example, if RMNAME=ABC

then RMID=“ABCRM ”.

 A sample CSLRIxxx PROCLIB member is shown in Figure 19.

BPE Considerations for the CSL RM

Use the RM BPE user exit list PROCLIB member to define RM user exits to BPE.

The member is the PROCLIB member specified by the EXITMBR= parameter in the

BPE configuration parameter PROCLIB member.

Use the user exit list PROCLIB member to specify the modules to be called for

specific exit types. Each user exit type can have one or more exit modules

associated with it. Use the EXITDEF statement to define the user exit modules to

be called for a given exit type.

The BPE user exit PROCLIB member and BPE configuration PROCLIB member

are described in IMS Version 9: Base Primitive Environment Guide and Reference.

A sample RM user exit list PROCLIB member is shown in Figure 20 on page 104.

--

* Sample RM Initialization PROCLIB Member. *

--

ARMRST=Y, /* ARM should restart RM on failure */

CQSSSN=CQS1, /* CQS to manage Resource Structure */

IMSPLEX(

 NAME=PLEX1, /* IMSplex name (CSLPLEX1) */

 RSRCSTRUCTURE(

 STRNAME=IMSRSRC01)), /* RESOURCE STRUCTURE NAME */

RMNAME=RM1 /* RM Name (RMID = RM1RM) */

--

* End of Member CSLRI000 *

--

Figure 19. CSLRIxxx PROCLIB Member

Chapter 4. CSL Resource Manager 103

|

CSL RM Administration

The tasks associated with administering RM are typically performed by the system

administrator or system operator. The tasks include:

v “Starting the CSL RM”

v “Shutting Down the CSL RM”

Starting the CSL RM

The system operator can start RM in two ways:

v As a started procedure.

v As JCL.

To start an RM address space with a started procedure, issue the z/OS START

command as follows:

S rmjobname

In this example, rmjobname is the job name of the RM address space to be started.

For more information on the initialization parameters used with the RM startup

procedures, see “CSL RM Startup Procedure” on page 99.

After RM is started, if it is abnormally terminated, it can be restarted using the z/OS

Automatic Restart Manager (ARM). RM must complete initialization for ARM to

restart the address space if an abend occurs. Use of ARM to restart RM is the

default.

Shutting Down the CSL RM

Recommendation: Although you can shut down RM by itself, IBM recommends

that you shut down RM by shutting down the CSL as one unit. For information

about shutting down the CSL, see “Shutting Down the CSL” on page 26.

To shut down RM by itself, issue one of the following:

v The CSLZSHUT request, described in “CSLZSHUT: Shut Down Request” on

page 26

v The z/OS STOP command:

P rmjobname

In this example, rmjobname is the job name of the RM address space to stop. If no

clients are connected to RM, RM shuts down. If clients are connected to RM,

**

* RM USER EXIT LIST PROCLIB MEMBER *

**

#---#

DEFINE 1 RM CLIENT CONNECTION USER EXIT: ZRCLNCN0 #

WITH AN ABEND LIMIT OF 8. #

#---#

EXITDEF(TYPE=CLNTCONN,EXITS=(ZRCLNCN0),ABLIM=8,COMP=RM)

#---#

DEFINE 1 RM INIT/TERM USER EXIT: ZRINTM00 #

#---#

EXITDEF(TYPE=INITTERM,EXITS=(ZRINTM00),COMP=RM)

Figure 20. RM User Exit PROCLIB Member

104 Common Service Layer Guide and Reference

|
|
|

|
|
|
|

|

|
|

message CSL0300I is issued, and RM quiesces in-flight work. After all work is

quiesced, the RM address space terminates.

Before shutting down an RM, consider the reasons for shutting down and how

shutting down RM can impact other IMSplex members. For more information, see

“Shutting Down the CSL” on page 26.

CSL RM User Exit Routines

You can write RM user exits to customize and monitor the RM environment. No

sample exits are provided.

RM uses BPE services to call and manage its user exits. BPE enables you to

externally specify the user exit modules to be called for a particular user exit type

by using EXITDEF= statements in the BPE user exit list PROCLIB members. BPE

also provides a common user exit runtime environment for all user exits. This

environment includes a standard user exit parameter list, callable services, static

and dynamic work areas for the exits, and a recovery environment for user exit

abends. For more information about the BPE user exit interface, see the IMS

Version 9: Base Primitive Environment Guide and Reference.

CSL RM Client Connection User Exit

This exit is called when a client connects (registers) to RM or disconnects

(deregisters) from RM. This exit is optional.

This exit is called for the following events:

v After a client has successfully connected to RM.

v After a client has successfully disconnected normally or abnormally from RM.

This exit is defined as TYPE=CLNTCONN in the EXITDEF statement in the BPE

user exit list PROCLIB member. You can specify one or more user exits of this type.

When this exit is invoked, all user exits of this type are called in the order specified

by the EXITS= keyword. For more information on how to define user exit module

names, see the RM BPE user exit List PROCLIB member information in IMS

Version 9: Base Primitive Environment Guide and Reference.

This exit is invoked amode 31 and should be reentrant.

Contents of Registers on Entry

 Register Contents

1 Address of BPE user exit parameter list (mapped by macro BPEUXPL).

13 Address of the first of 2 prechained 72-byte save areas. These save areas

are chained according to standard z/OS save area linkage convention. The

first save area can be used by the exit to save registers on entry. The second

save area is for use by routines called from the user exit.

14 Return address.

15 Entry point of exit routine.

On entry to the Client Connection exit, register 1 points to a standard BPE user exit

parameter list. Field UXPL_EXITPLP in this list contains the address of the RM

Client Connection user exit parameter list, which is mapped by macro CSLRCLX.

Field UXPL_COMPTYPEP in this list points to the character string “RM” indicating

an RM address space.

Chapter 4. CSL Resource Manager 105

|
|

|
|
|

RM Client Connection User Exit Parameter List--Client Connect: Table 35 lists

the user exit parameter list for client connect. Included are the field name, the offset

value and length, both in hexadecimal, how the field is used, and a brief description

of the field.

 Table 35. RM Client Connection User Exit Parameter List--Client Connect

Field Name Offset Length Field Usage Description

RCLX_PVER X’00’ X’04’ Input Parameter list version number (00000001).

RCLX_FUNC X’04’ X’04’ Input Function code

1 Client Connect.

RCLX_MBRNAME X’08’ X’08’ Input Client (IMSplex member) name.

RCLX_MBRTYPE X’10’ X’02’ Input IMSplex member type (mapped by CSLSTPIX).

X’12’ X’02’ None Reserved.

RCLX_MBRSTYPE X’14’ X’08’ Input IMSplex member subtype

X’1C’ X’04’ None Reserved.

RM Client Connection User Exit Parameter List--Client Disconnect: Table 36

lists the user exit parameter list for client disconnect. Included are the field name,

the offset value and length, both in hexadecimal, how the field is used, and a brief

description of the field.

 Table 36. RM Client Connection User Exit Parameter List--Client Disconnect

Field Name Offset Length Field Usage Description

RCLX_PVER X’00’ X’04’ Input Parameter list version number (00000001).

RCLX_FUNC X’04’ X’04’ Input Function code

2 Client Disconnect.

RCLX_MBRNAME X’08’ X’08’ Input Client (IMSplex member) name.

RCLX_MBRTYPE X’10’ X’02’ Input IMSplex member type (mapped by CSLSTPIX).

RCLX_FLAG1 X’12’ X’01’ Input Flag byte indicates whether the client disconnect

is normal or abnormal.

X’80’ Client disconnect is abnormal.

X’13’ X’01’ None Reserved.

RCLX_MBRSTYPE X’14’ X’08’ Input IMSplex member subtype

X’1C’ X’08’ None Reserved.

Contents of Registers on Exit

 Register Contents

15 Return Code Meaning

0 Always zero

All other registers must be restored.

106 Common Service Layer Guide and Reference

CSL RM Initialization/Termination User Exit

This exit is called for the following events:

v After RM has completed initialization

v After each IMSplex has initialized

v When RM is terminating normally

v When an IMSplex is terminating normally

This exit is not called during RM address space abnormal termination or IMSplex

abnormal termination. This exit is optional.

This exit is defined as TYPE=INITTERM in the EXITDEF statement in the BPE user

exit list PROCLIB member. You can specify one or more user exits of this type.

When this exit is invoked, all user exits of this type are called in the order specified

by the EXITS= keyword. For more information on how to define user exit module

names, see the RM BPE user exit List PROCLIB member information in IMS

Version 9: Base Primitive Environment Guide and Reference.

This exit is invoked amode 31 and should be reentrant.

Contents of Registers on Entry

 Register Contents

1 Address of BPE user exit parameter list (mapped by macro BPEUXPL).

13 Address of the first of 2 prechained 72-byte save areas. These save areas

are chained according to standard z/OS save area linkage convention. The

first save area can be used by the exit to save registers on entry. The second

save area is for use by routines called from the user exit.

14 Return address.

15 Entry point of exit routine.

On entry to the Initialization/Termination exit, register 1 points to a standard BPE

user exit parameter list. Field UXPL_EXITPLP in this list contains the address of the

RM Initialization/Termination user exit parameter list, which is mapped by macro

CSLRITX. Field UXPL_COMPTYPEP in this list points to the character string “RM,”

indicating an RM address space.

RM Init/Term User Exit Parameter List--RM Initialization: Table 37 lists the user

exit parameter list for RM initialization. Included are the field name, the offset value

and length, both in hexadecimal, how the field is used, and a brief description of the

field.

 Table 37. RM Init/Term User Exit Parameter List--RM Initialization

Field Name Offset Length Field Usage Description

RITX_PVER X’00’ X’04’ Input Parameter list version number (00000001).

RITX_FUNC X’04’ X’04’ Input Function code:

1 RM Initialization

RM Init/Term User Exit Parameter List--RM Termination: Table 38 on page 108

lists the user exit parameter list for RM termination. Included are the field name,

offset value and length, both in hexadecimal, how the field is used, and a brief

description of the field.

Chapter 4. CSL Resource Manager 107

Table 38. RM Init/Term User Exit Parameter List--RM Termination

Field Name Offset Length Field Usage Description

RITX_PVER X’00’ X’04’ Input Parameter list version number (00000001).

RITX_FTERM X’04’ X’04’ Input Function code

2 RM normal termination.

RM Init/Term User Exit Parameter List--IMSplex Initialization: Table 39 lists the

user exit parameter list for IMSplex initialization. Included are the field name, the

offset value and length, both in hexadecimal, how the field is used, and a brief

description of the field.

 Table 39. RM Init/Term User Exit Parameter List--IMSplex Initialization

Field Name Offset Length Field Usage Description

RITX_PVER X’00’ X’04’ Input Parameter list version number (00000001).

RITX_FPLXINIT X’04’ X’04’ Input Function code

3 IMSplex normal initialization.

RITX_IPLEXNM X’08’ X’08’ Input IMSplex name.

RITX_ISTRNM X’10’ X’10’ Input Resource structure name.

RM Init/Term User Exit Parameter List--IMSplex Termination: Table 40 lists the

user exit parameter list for IMSplex termination. Included are the field name, the

offset value and length, both in hexadecimal, how the field is used, and a brief

description of the field.

 Table 40. RM Init/Term User Exit Parameter List--IMSplex Termination

Field name Offset Length Field Usage Description

RITX_PVER X’00’ X’04’ Input Parameter list version number (00000001).

RITX_FUNC X’04’ X’04’ Input Function code

4 IMSplex normal termination.

RITX_TPLEXNM X’08’ X’08’ Input IMSplex name.

RITX_TSTRNM X’10’ X’10’ Input Resource structure name.

Contents of Registers on Exit

 Register Contents

15 Return Code Meaning

0 Always zero

All other registers must be restored.

CSL RM Statistics Available through BPE Statistics User Exit

The BPE Statistics user exit can be used to gather both BPE and RM statistics.

Refer to the BPE user exit information in IMS Version 9: Base Primitive

Environment Guide and Reference for details on the exit and when it is called.

108 Common Service Layer Guide and Reference

The following describes the RM statistics that are available to the BPE Statistics

user exit and are returned on a CSLZQRY FUNC=STATS request directed to the

RM address space. When the user exit is called, field

BPESTXP_COMPSTATS_PTR in the BPE Statistics user exit parameter list,

BPESTXP, contains the pointer to the RM statistics header. When the CSLZQRY

FUNC=STATS request is called, the OUTPUT= buffer points to the output area

mapped by CSLZQRYO. The output area field ZQYO_STXOFF contains the offset

to the RM statistics header. The header is mapped by CSLRSTX.

CSL RM Statistics Header

Table 41 lists the RM statistics header. Included are the offset value and length,

both in hexadecimal, how the field is used, and a brief description of the field.

 Table 41. RM Statistics Header

Field Name Offset Length Field Usage Description

RSTX_ID X’00’ X’08’ Input Eyecatcher “CSLRSTX”.

RSTX_LEN X’08’ X’04’ Input Length of header.

RSTX_PVER X’0C’ X’04’ Input Header version number (0000001).

RSTX_PLEXCNT X’10’ X’04’ Input Number of IMSplexes for which statistics are

available.

RSTX_STATCNT X’14’ X’04’ Input Number of statistics areas available for each

IMSplex.

RSTX_STATLEN X’18’ X’04’ Input Length of all statistics areas for each IMSplex.

RSTX_STATOFF X’1C’ X’04’ Input Offset to statistics area for first IMSplex. This is

the offset from the beginning of CSLRSTX. The

offset points to the CSLRST1 area.

RSTX_RST1OFF X’20’ X’04’ Input Offset to the RM request statistics record for

activity performed by RM requests (mapped by

macro CSLRST1). The offset is from the start

of the statistics area for this IMSplex. Refer to

Table 42 for a description of the RM request

statistics record.

RSTX_RST2OFF X’24’ X’04’ Input Offset to RM IMSplex statistics record for

activity performed by RM for an IMSplex

(mapped by macro CSLRST2). The offset is

from the start of the statistics area for this

IMSplex. Refer to Table 43 on page 110 for a

description of the RM IMSplex statistics record.

X’28’ X’04’ None Reserved.

X’2C’ X’04’ None Reserved.

CSL RM Statistics Record CSLRST1

CSLRST1 contains statistics that are related to specific requests processed by RM.

Table 42 lists the RM statistics record CSLRST1. Included are the offset value and

length, both in hexadecimal, how the field is used, and a brief description of the

field.

 Table 42. RM Statistics Record CSLRST1

Field Name Offset Length Field Usage Description

RST1_ID X’00’ X’08’ Input Eyecatcher “CSLRST1”.

RST1_LEN X’08’ X’04’ Input Length of valid data.

RST1_PVER X’0C’ X’04’ Input Parameter list version number (00000001).

Chapter 4. CSL Resource Manager 109

|
|
|
|

Table 42. RM Statistics Record CSLRST1 (continued)

Field Name Offset Length Field Usage Description

RST1_RMUPD X’10’ X’04’ Input Number of CSLRMUPD FUNC=UPDATE

requests.

RST1_RMQRY X’14’ X’04’ Input Number of CSLRMQRY FUNC=QUERY

requests.

RST1_RMDEL X’18’ X’04’ Input Number of CSLRMDEL FUNC=DELETE

requests.

RST1_RMREG X’20’ X’04’ Input Number of CSLRMREG FUNC=REGISTER

requests.

RST1_RMDRG X’24’ X’04’ Input Number of CSLRMDRG FUNC=DEREGISTER

requests.

RST1_RMDRGIN X’28’ X’04’ Input Number of internal deregister requests for

client normal termination.

RST1_RMDRGIA X’2C’ X’04’ Input Number of internal deregister requests for

client abnormal termination.

X’30’ X’10’ Input Not used.

RST1_RMPRCI X’40’ X’04’ Input Number of CSLRMPRI FUNC=INITIATE initiate

IMSplex-wide process requests.

RST1_RMPRCT X’44’ X’04’ Input Number of CSLRMPRT FUNC=TERMINATE

terminate IMSplex-wide process requests.

RST1_RMPRCS X’48’ X’04’ Input Number of CSLRMPRS FUNC=PROCESS

IMSplex-wide step requests.

RST1_RMPRCR X’4C’ X’04’ Input Number of CSLRMPRR FUNC=RESPOND

IMSplex-wide step response requests.

RST1_ZQRY X’50’ X’04’ Input Number of CSLZQRY requests.

X’54’ X’04’ Input Number of BPESTATS requests.

CSL RM Statistics Record CSLRST2

CSLRST2 contains statistics that are related to an IMSplex, but not to specific

requests. Table 43 lists the RM statistics record CSLRST2. Included are the offset

value and length, both in hexadecimal, how the field is used, and a brief description

of the field.

 Table 43. RM Statistics Record CSLRST2

Field Name Offset Length Field Usage Description

RST2_ID X’00’ X’08’ Input Eyecatcher “CSLRST2”.

RST2_LEN X’08’ X’04’ Input Length of valid data.

RST2_PVER X’0C’ X’04’ Input Parameter list version number (00000001).

RST2_PLEXNAME X’10’ X’08’ Input IMSplex name.

RST2_STRNAME X’18’ X’10’ Input Resource structure name.

RST2_STRVER X’28’ X’08’ Input Resource structure version.

RST2_CQSID X’30’ X’08’ Input CQS ID.

RST2_CLIENTS X’38’ X’04’ Input Number of registered clients.

RST2_CREATES X’3C’ X’04’ Input Number of resource creates.

RST2_UPDATES X’40’ X’04’ Input Number of resource updates.

RST2_DELETES X’44’ X’04’ Input Number of resource deletes.

110 Common Service Layer Guide and Reference

|
|
|
|

Writing a CSL RM Client

If you want to use RM to manage global resources in an IMSplex for your own

product or service, you have to write one or more RM clients. An RM client uses

RM requests, some issued in a particular sequence, to communicate with RM.

To write an RM client, you can use the set of client requests provided by RM.

These requests allow a client to access RM or resources on a resource structure,

or to coordinate an IMSplex-wide process. One example of an RM client is IMS.

You can write an RM client in assembler language.

An RM client uses RM requests to make use of RM services and resources. A client

issues SCI and RM requests to request RM services. Some of the requests must

follow a particular sequence. Other requests can be issued multiple times, in any

order, based on the processing requirements of the client.

Before an RM client can issue RM requests, it must register:

v To SCI

v Its own resource types and associated name types to RM

v To each active RM in the IMSplex, so any RM can process an RM request

See “CSLRMREG: Register Clients” on page 136 for more information on RM client

registration.

Table 44 lists the sequence of requests issued by an RM client. The request is

listed with its purpose.

 Table 44. Sequence of Requests for RM Client

Request Purpose

CSLSCREG Registers to SCI, which enables the client to send RM requests to

RM through SCI.

CSLSCRDY Readies the RM client to SCI, which routes messages to the client

by client type

CSLRMREG Registers client to RM to enable communication with RM. The client

should register to each active RM in the IMSplex, so any RM can

process an RM request. The client can also register its own

resource types and associated name types to RM.

CSLRMxxx Issues RM resource requests such as CSLRMUPD, CSLRMDEL,

CSLRMQRY to manipulate resources on a resource structure.

CSLRMPxx Issues RM process requests such as CSLRMPRI, CSLRMPRS,

CSLRMPRR, and CSLRMPRT to participate in an IMSplex-wide

process.

CSLSCBFR Releases the output buffer returned by the request, if any.

CSLRMDRG Deregisters client from RM to end communications with RM.

CSLSCDRG Deregisters from SCI.

Table 45 lists the sequence of requests issued by an RM client that is participating

in IMSplex-wide processes. The request is listed with its purpose.

 Table 45. Sequence of Requests for RM Client Participating in IMSplex-wide Process

Request Purpose

CSLRMPRI Initiate an IMSplex-wide process.

Chapter 4. CSL Resource Manager 111

Table 45. Sequence of Requests for RM Client Participating in IMSplex-wide

Process (continued)

Request Purpose

CSLRMPRS Process a step in an IMSplex-wide process. A process can have

zero, one, or more process steps. The client that initiates the

process step is the master of the step.

CSLRMPRR Respond to a process step.

CSLRMPRT Terminate an IMSplex-wide process.

CSL RM Requests

The requests associated with RM are described in the following topics:

v “Using CSL RM Requests to Manage Global Resources”

v “Using CSL RM Requests to Coordinate IMSplex-wide Processes”

Using CSL RM Requests to Manage Global Resources

You can use the following requests to manage sysplex processes and maintain

global resource information:

v “CSLRMDEL: Delete Resources” on page 113

v “CSLRMDRG: Deregister Clients” on page 117

v “CSLRMQRY: Query Resources” on page 131

v “CSLRMREG: Register Clients” on page 136

v “CSLRMUPD: Update Resources” on page 140

Before a client can access or change global resource information, it must register to

SCI using the CSLSCREG request (see “CSLSCREG: Registration Request” on

page 188). The client must issue an SCI registration request for every IMSplex with

which it intends to communicate.

After the client registers to SCI, it must register to RM using the CSLRMREG

request.

When the client is ready to terminate, it must deregister from RM using the

CSLRMDRG request and then deregister from SCI using the CSLSCDRG request.

Using CSL RM Requests to Coordinate IMSplex-wide Processes

You can use RM-supplied requests to coordinate IMSplex-wide processes. All

clients that are to participate in the process register to RM using the RM client

registration request (CSLRMREG), if the clients have not registered already. One

client initiates the process using the RM process initiate request (CSLRMPRI). The

same or a different client initiates a step using RM process step request

(CSLRMPRS). The initiating client is called the master of the step. One RM

processes the request and sends RM directives to the other clients to perform the

process step. All the other clients process the step, build output, and then respond

to the step using the RM process respond request (CSLRMPRR). RM consolidates

the responses from all the clients into one output, and then returns the output to the

master of the process step. If there are more steps in the process, a client initiates

a step, and the clients perform processing and respond. Any client terminates the

process using the RM process terminate request (CSLRMPRT). Clients can

deregister using the RM client deregistration request (CSLRMDRG) if required.

112 Common Service Layer Guide and Reference

Some failures can cause RM to lose all knowledge of an IMSplex-wide process.

These include resource structure failure (and its duplex, if applicable) and failure of

all RMs. If this type of failure occurs, each RM client should clean up knowledge of

the process locally, and a master RM should terminate the process. The first RM

client to detect a problem can initiate a clean up process step by issuing the

CSLRMPRS request with the force option; this enables RM to force the process

step regardless of the error. The clients participating in the process step clean up

the process locally. The master of this process step then terminates the process

with the CSLRMPRT request.

The requests that can be used to coordinate IMSplex-wide processes include:

v “CSLRMPRI: Process Initiate” on page 118

v “CSLRMPRR: Process Respond” on page 121

v “CSLRMPRS: Process Step” on page 123

v “CSLRMPRT: Process Terminate” on page 129

CSLRMDEL: Delete Resources

Use the CSLRMDEL request to delete one or more uniquely named resources on a

resource structure.

This request is supported in assembler language.

CSLRMDEL Syntax

The syntax for the CSLRMDEL request follows.

CSLRMDEL DSECT Syntax: Use the DSECT function of a CSLRMDEL request to

include the following in your program:

v Equate (EQU) statement for the CSLRMDEL parameter list length

v The CSLRMDEL return codes, reason codes, and completion codes

v The CSLRDELL DSECT to map the input delete list

v The CSLRDELO DSECT to map the delete output

�� CSLRMDEL FUNC=DSECT ��

CSLRMDEL DELETE Syntax: Use the DELETE function of a CSLRMDEL request

to delete one or more uniquely named resources on a resource structure.

�� CSLRMDEL FUNC=DELETE PARM=parm LIST=deletelist �

� LISTLEN=deletelistlength OUTPUT=output OUTLEN=outputlength �

�
ECB=ecb

RETNAME=returnname
 �

� RETCODE=returncode

RETTOKEN=returntoken
 �

� RSNCODE=reasoncode SCITOKEN=scitoken ��

CSLRMDEL Parameters

The parameters for the CSLRMDEL request follow.

ECB=symbol

Chapter 4. CSL Resource Manager 113

ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS ECB used for asynchronous

requests. When the request is complete, the ECB specified is posted. If an ECB

is not specified, the task is suspended until the request is complete. If an ECB

is specified, the invoker of the request must issue a WAIT (or equivalent) after

receiving control from CSLRMDEL before using or examining any data returned

by this request (including the RETCODE and RSNCODE fields).

LIST=symbol

LIST=(r2-r12)

(Required) - Specifies the delete resource list built by the caller. Each list entry

is a separate delete request. The list length can vary, depending on the number

of list entries.

 CSLRDELL maps the delete resource list entry. The list contains a header and

one or more list entries. The list entries must reside in contiguous storage. Each

delete list entry contains the following:

v Resource name - the client-defined name of the resource.

v Resource type - a client-defined physical grouping of resources on the

resource structure. Valid values are 1-255.

LISTLEN=symbol

LISTLEN=(r2-r12)

(Required) - Specifies the 4-byte delete resource list length.

OUTLEN=symbol

OUTLEN=(r2-r12)

(Required) - Specifies a 4-byte field to receive the length of the output returned

by the CSLRMDEL request. OUTLEN contains the length of the output pointed

to by the OUTPUT= parameter.

 The output length is zero if no output is built, for example, if an error is detected

before any output can be built.

OUTPUT=symbol

OUTPUT=(r2-r12)

(Required) - Specifies a 4-byte field to receive the address of the variable

length output returned by the CSLRMDEL request. The output contains a

header and one or more delete entries for resource deletes that were

attempted. The output length is returned in the OUTLEN= field.

 The output address is zero if no output was built, for example, if an error was

detected before any output could be built.

 The CSLRDELO macro maps the output that is returned. The output contains a

header and one or more list entries.

 The output header contains the following:

v Eyecatcher

v Output length

v CSLRDELO version

v CSLRDELO header length (offset to start of entries)

v CSLRDELO entry length

v Resource entry count

Each output entry represents a resource delete that failed. Each entry contains

the following:

v Output entry length - the list entry length

114 Common Service Layer Guide and Reference

v Name type - a client-defined value associated with a resource type that

ensures uniqueness of client-defined resource names within a name type.

Valid values are 1-255.

v Resource name

v Resource type

v Delete type

v Version - resource version of an existing resource if the delete request failed

because of a version mismatch.

v Owner - resource owner of an existing resource if the delete failed because

of a version mismatch and the option to read the owner was set.

v Completion code for the delete request. Completion codes are mapped by

CSLRRR.

Possible completion codes are:

X'00000008'

Invalid resource type.

X'00000010'

Version mismatch. The version specified on input does not match the

resource’s version, so delete fails.

X'00000018'

Resource type is not registered. The resource type must be registered by

using a CSLRMREG request.

X'00000024'

Resource structure is unavailable.

X'00000038'

Delete failed because of CQS internal error.

X'0000003C'

Delete failed because RM incorrectly built the CQSDEL list entry.

 The output buffer is not preallocated by the caller. After being returned from the

request, this word contains the address of a buffer containing the delete output.

It is the caller’s responsibility to release this storage by issuing the CSLSCBFR

FUNC=RELEASE request when it is through with the storage. The length of the

output is returned in the OUTLEN= field.

PARM=symbol

PARM=(r2-r12)

(Required) - specifies the CSLRMDEL parameter list. The length of the

parameter list must be equal to the parameter list length EQU value defined by

RDEL_PARMLN.

RETCODE=symbol

RETCODE=(r2-r12)

(Required) - specifies a 4-byte field to receive the return code on output. RM

return codes are defined in CSLRRR. SCI return codes are defined in CSLSRR.

Possible return codes are described in Table 46 on page 116.

RETNAME=symbol

RETNAME=(r2-r12)

(Optional) - Specifies an 8-byte field to receive the RM name returned to the

caller. This is the CSL member name of the target RM address space to which

SCI sent the request.

RETTOKEN=symbol

Chapter 4. CSL Resource Manager 115

RETTOKEN=(r2-r12)

(Optional) - Specifies a 16-byte field to receive RM’s SCI token returned to the

caller. This is the SCI token for the target RM address space to which SCI sent

the request.

RSNCODE=symbol

RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. RM

reason codes are defined in CSLRRR. SCI reason codes are defined in

CSLSRR. Possible reason codes are described in Table 46.

SCITOKEN=symbol

SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token

uniquely identifies this connection to SCI. The SCI token was returned by a

successful CSLSCREG FUNC=REGISTER request.

CSLRMDEL Return and Reason Codes

Table 46 lists the return and reason codes that can be returned on a CSLRMDEL

request. Also included is the meaning of a reason code (that is, what possibly

caused it).

 Table 46. CSLRMDEL Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' The request completed successfully.

X'03000008' X'00002000' The client is not registered.

X'00002100' The delete list length is invalid.

X'00002108' The delete list address is invalid.

X'00002110' The version in the list header (DELL_PVER) is zero,

which is invalid. The list version must be set in the list

header to the maximum list version (DELL_PVERMAX).

X'00002114' The list header length is invalid. The list header length

cannot be zero or greater than the list length that was

passed in. The list header length (DELL_HDRLEN)

must be set in the list header to the list header length.

X'00002200' One of the list entries contains an invalid resource type,

such as zero. RM assumes that the rest of the list is

invalid.

X'0000220C' One of the list entries contains one or more invalid

delete options. RM assumes that the rest of the list is

invalid.

X'00002210' A resource name or owner is required.

X'00002214' The version is invalid.

X'00002404' No resource structure is defined.

116 Common Service Layer Guide and Reference

Table 46. CSLRMDEL Return and Reason Codes (continued)

Return Code Reason Code Meaning

X'0300000C' X'00003000' The request succeeded for at least one, but not all, list

entries. Check the completion code in each list entry in

the OUTPUT buffer for individual errors.

X'00003004' The request failed for all entries. Check the completion

code in each list entry in the OUTPUT buffer for

individual errors.

X'00003008' The request failed for one or more list entries and all

failures were version mismatches. Check the

completion code in each list entry in the OUTPUT buffer

for individual errors.

X'03000010' X'00004000' The CQS address space is unavailable. Retry the

request again, which attempts to route the request to a

different RM with an available CQS.

X'00004100' The requested version is not supported. The client

compiled with a version of CSLRMDEL that is not

supported by RM. All RMs must be migrated to a new

release before IMS is migrated to a new release that

uses a new CSLRMDEL function.

X'00004104' The list version is not supported. The client created the

delete list at a version that is not supported by RM. All

RMs must be migrated to a new release before the

client is migrated to a new release that uses a new

CSLRMDEL function.

X'03000014' X'00005000' Storage allocation for the delete output buffer failed.

X'00005120' Storage allocation for the CQSDEL buffer failed.

X'00005200' The CQS request resulted in unexpected error.

X'00005204' The CQS request failed because RM incorrectly built

the request input.

CSLRMDRG: Deregister Clients

The deregister request is issued by a client when the client no longer wants to

process resource requests or IMSplex-wide process requests from RM. The

deregister request removes client information from RM and stops RM from sending

new resource requests to the client. Some information about the client is retained

that can affect IMSplex-wide processes.

This request is issued by resource processing clients such as the IMS control

region.

This request is supported in assembler.

CSLRMDRG Syntax

The syntax for the CSLRMDRG request follows.

CSLRMDRG DSECT Syntax: Use the DSECT function of a CSLRMDRG request

to include equate (EQU) statements in your program for the CSLRMDRG parameter

list length and the deregister options.

�� CSLRMDRG FUNC=DSECT ��

Chapter 4. CSL Resource Manager 117

CSLRMDRG Deregister Syntax: Use the DEREGISTER function of a

CSLRMDRG request to deregister from RM.

�� CSLRMDRG FUNC=DEREGISTER PARM=parm

OPTWORD1=deregisteroptions
 �

� RETCODE=returncode RSNCODE=reasoncode SCITOKEN=scitoken ��

CSLRMDRG Parameters

OPTWORD1=symbol

OPTWORD1=(r2-r12)

(Optional) - Specifies a 4-byte field containing deregistration options. CSLRMDRG

FUNC=DSECT generates the equates for deregistration options.

X'80000000'

Remove client from IMSplex. Delete all knowledge of the client.

PARM=symbol

PARM=(r2-r12)

(Required) - specifies the CSLRMDRG parameter list. The length of the

parameter list must be equal to the parameter list length EQU value defined by

RDRG_PARMLN.

RETCODE=symbol

RETCODE=(r2-r12)

(Required) - specifies a 4-byte field to receive the return code on output. RM

return codes are defined in CSLRRR. RM does not return a response to the

CSLRMDRG request.

RSNCODE=symbol

RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. SCI

reason codes are defined in CSLSRR. RM does not return a response to the

CSLRMDRG request.

SCITOKEN=symbol

SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token

uniquely identifies this connection to SCI. The SCI token was returned by a

successful CSLSCREG FUNC=REGISTER request.

CSLRMPRI: Process Initiate

Use the CSLRMPRI request for a client to initiate a process across the IMSplex.

RM ensures that only one IMSplex-wide process of a type can be in progress at

one time. The process initiation fails if any other IMSplex-wide process of the type

is in progress.

This request is supported in assembler language.

CSLRMPRI Syntax

The syntax for the CSLRMPRI request follows.

CSLRMPRI DSECT Syntax: Use the DSECT function of a CSLRMPRI request to

include equate (EQU) statements in your program for the length of the CSLRMPRI

parameter list.

118 Common Service Layer Guide and Reference

�� CSLRMPRI FUNC=DSECT ��

CSLRMPRI INITIATE Syntax: Use the INITIATE function of a CSLRMPRI request

to initiate an IMSplex-wide process.

CSLRMPRI Parameters

The parameters for the CSLRMPRI request follow.

ECB=symbol

ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS ECB used for asynchronous

requests. When the request is complete, the ECB specified is posted. If an ECB

is not specified, the task is suspended until the request is complete. If an ECB

is specified, the invoker of the request must issue a WAIT (or equivalent) after

receiving control from CSLRM PRI before using or examining any data returned

by this request (including the RETCODE and RSNCODE fields).

PARM=symbol

PARM=(r2-r12)

(Required) - Specifies the CSLRMPRI parameter list. The length of the

parameter list must be equal to the parameter list length EQU value defined by

RPRI_PARMLN.

PRCNAME=symbol

PRCNAME=(r2-r12)

(Required) - specifies an 8-byte field containing the process name. The process

name is client defined and has no meaning to RM. RM uses the process name

and the process type to insure that only one instance of a process of a

particular process type is in progress at one time.

PRCTOKEN=symbol

PRCTOKEN=(r2-r12)

(Required) - specifies a 16-byte field to receive the process token returned to

the caller. The process token uniquely identifies the process instance. The

process token returned is zero, if the IMSplex is defined with a resource

structure. The process token is non-zero, if the IMSplex is not defined with a

resource structure. The process token must be specified as input on any

subsequent CSLRMPRS, CSLRMPRR, or CSLRMPRT request.

PRCTYPE=symbol

PRCTYPE=(r2-r12)

(Required) - specifies a 1-byte client-defined process type. Only one process of

a particular type can be in progress at any one time. The process type can be 1

through 255.

RETCODE=symbol

RETCODE=(r2-r12)

(Required) - specifies a 4-byte field to receive the return code on output. RM

�� CSLRMPRI FUNC=INITIATE PARM=parm PRCNAME=processname �

� PRCTOKEN=processtoken PRCTYPE=processtype

ECB=ecb
 �

�
RETNAME=returnname

RETTOKEN=returntoken
 RETCODE=returncode �

� RSNCODE=reasoncode SCITOKEN=scitoken UOWTOKEN=uowtoken ��

Chapter 4. CSL Resource Manager 119

return codes are defined in CSLRRR. SCI return codes are defined in CSLSRR.

Possible return codes are described in Table 47.

RETNAME=symbol

RETNAME=(r2-r12)

(Optional) - Specifies an 8-byte field to receive the RM name returned to the

caller. This is the CSL member name of the target RM address space to which

SCI sent the request.

RETTOKEN=symbol

RETTOKEN=(r2-r12)

(Optional) - Specifies a 16-byte field to receive RM’s SCI token returned to the

caller. This is the SCI token for the target RM address space to which SCI sent

the request.

RSNCODE=symbol

RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. RM

reason codes are defined in CSLRRR. SCI reason codes are defined in

CSLSRR. Possible reason codes are described in Table 47.

SCITOKEN=symbol

SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token

uniquely identifies this connection to SCI. The SCI token was returned by a

successful CSLSCREG FUNC=REGISTER request.

UOWTOKEN=symbol

UOWTOKEN=(r2-r12)

(Required) - specifies a 16-byte field containing the unit of work token. The

UOW token uniquely identifies an instance of this process and ties all of the

process steps together. The UOW token must be specified on the RM process

step request, CSLRMPRS. The UOW token is client-defined and has no

meaning to RM.

CSLRMPRI Return and Reason Codes

Table 47 lists the return and reason codes that can be returned on a CSLRMPRI

request. Also included is the meaning of a reason code (that is, what possibly

caused it).

 Table 47. CSLRMPRI Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' The request completed successfully.

X'03000008' X'00002000' The client is not registered.

X'00002208' The process type is invalid.

X'00002310' The UOW token is invalid.

120 Common Service Layer Guide and Reference

Table 47. CSLRMPRI Return and Reason Codes (continued)

Return Code Reason Code Meaning

X'03000010' X'00004000' The CQS address space is unavailable. Retry the

request to attempt routing the request to another RM

with an available CQS.

X'00004100' The requested version is not supported. The client

compiled with a version of CSLRMPRI that is not

supported by RM. All RMs must be migrated to a new

release before IMS is migrated to a new release that

uses a new CSLRMPRI function.

X'00004120' A process of the same type is already in progress. This

process initiation request is rejected. Try the process

again later.

X'0000412C' A different process of the same type is already in

progress. This process initiation request is rejected. Try

the process again later.

X'03000014' X'00005114' The process block allocation failed.

X'00005200' The CQS request resulted in unexpected error.

X'00005204' The CQS request failed because RM incorrectly built

the request input.

X'00005208' The resource structure is not available.

X'0000520C' The resource structure is full.

X'00005210' RM is unable to add the process block to hash table.

X'00005218' RM is unable to scan the process block in hash table.

X'00005220' RM is unable to get the process latch.

CSLRMPRR: Process Respond

Use the CSLRMPRR request for a client to respond to a step in an IMSplex-wide

process.

This request is supported in assembler language.

CSLRMPRR Syntax

The syntax for the CSLRMPRR request follows.

CSLRMPRR DSECT Syntax: Use the DSECT function of a CSLRMPRR request

to include equate (EQU) statements in your program for the length of the

CSLRMPRR parameter list.

�� CSLRMPRR FUNC=DSECT ��

CSLRMPRR RESPOND Syntax: Use the RESPOND function of a CSLRMPRR

request to respond to a step in an IMSplex-wide process.

Chapter 4. CSL Resource Manager 121

CSLRMPRR Parameters

The parameters for the CSLRMPRR request follow.

OUTLEN=symbol

OUTLEN=(r2-r12)

(Required) - specifies a 4-byte input field that contains the length of the process

step output buffer. OUTLEN= contains the length of the output pointed to by the

OUTPUT= parameter.

OUTPUT=symbol

OUTPUT=(r2-r12)

(Required) - Specifies a 4-byte field that contains the address of the output

buffer built by the caller. The output is client-defined and contains the results

from this client’s processing of the step. The output length is returned in the

OUTLEN= field.

PARM=symbol

PARM=(r2-r12)

(Required) - specifies the CSLRMPRR parameter list. The length of the

parameter list must be equal to the parameter list length EQU value defined by

RPRR_PARMLN.

PRCTOKEN=symbol

PRCTOKEN=(r2-r12)

(Required) - specifies a 16-byte field that contains the process token that

uniquely identifies the process. This token was returned on a successful

CSLRMPRI FUNC=INITIATE request.

 If the IMSplex is defined with a resource structure, the process token is zero.

RETCODE=symbol

RETCODE=(r2-r12)

(Required) - specifies a 4-byte field to receive the return code on output. SCI

return codes are defined in CSLSRR. RM does not return a response to

CSLRMPRR.

RMNAME=symbol

RMNAME=(r2-r12)

(Required) - specifies an 8-byte field containing the RM name to which to send

the process step response. This is the RM that originated the process step.

RQSTRC=symbol

RQSTRC=(r2-r12)

(Required) - specifies a 4-byte field that contains the return code to be passed

to the originator of the process step on output. The return code is defined by

the process step originating client and indicates the result of the process step.

RQSTRSN=symbol

�� CSLRMPRR FUNC=RESPOND PARM=parm PRCTOKEN=processtoken �

� RMNAME=rmname

OUTPUT=output

OUTLEN=outputlength
 �

� RETCODE=returncode RSNCODE=reasoncode R QSTRC=processreturncode �

� R QSTRSN=processreasoncode SCITOKEN=scitoken ��

122 Common Service Layer Guide and Reference

RQSTRSN=(r2-r12)

(Required) - specifies a 4-byte field that contains the reason code to be passed

to the originator of the process step on output. The reason code is defined by

the process step originating client and indicates the result of the process step.

RSNCODE=symbol

RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. RM

reason codes are defined in CSLRRR. RM does not return a response to

CSLRMPRR.

SCITOKEN=symbol

SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token

uniquely identifies this connection to SCI. The SCI token was returned by a

successful CSLSCREG FUNC=REGISTER request.

CSLRMPRR Return and Reason Codes

CSLRMPRR is sent to the target client address space using the SCI message

protocol; RM does not return codes to CSLRMPRR. All return and reason codes

that are applicable to the CSLSCMSG request can be returned on a CSLRMPRR

request.

CSLRMPRS: Process Step

Use the CSLRMPRS request for a client to perform a step in a process. An

IMSplex-wide process can consist of zero, one, or more steps.

This request is supported in assembler language.

CSLRMPRS Syntax

The syntax for the CSLRMPRS request follows.

CSLRMPRS DSECT Syntax: Use the DSECT function of a CSLRMPRS request

to include equate (EQU) statements in your program for the length of the

CSLRMPRS parameter list and the process step request options.

�� CSLRMPRS FUNC=DSECT ��

CSLRMPRS PROCESS Syntax: Use the PROCESS function of a CSLRMPRS

request to perform a step in an IMSplex-wide process.

Chapter 4. CSL Resource Manager 123

CSLRMPRS Parameters

The parameters for the CSLRMPRS request follow.

CDATA=symbol

CDATA=(r2-r12)

(Optional) - specifies a variable length area that contains client data to send to

clients participating in the IMSplex-wide process step. The client data has

meaning to clients, not to RM.

CDATALEN=symbol

CDATALEN=(r2-r12)

(Optional) - specifies a 4-byte input field that contains the client data length. If

this parameter is specified, CDATA= must also be specified.

ECB=symbol

ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS ECB used for asynchronous

requests. When the request is complete, the ECB specified is posted. If an ECB

is not specified, the task is suspended until the request is complete. If an ECB

is specified, the invoker of the request must issue a WAIT (or equivalent) after

receiving control from CSLRM PRS before using or examining any data

returned by this request (including the RETCODE and RSNCODE fields).

LIST=symbol

LIST=(r2-r12)

(Required) - specifies the variable length input list that contains the list of clients

to which to send the process step.

 The process step list contains a list header and one or more list entries. The list

header contains the list header length, the parameter list version, the list entry

�� CSLRMPRS FUNC=PROCESS PARM=parm PRCNAME=processname �

� PRCTOKEN=processtoken PRCTYPE=processtype STEPNAME=processstepname �

� LIST=list LISTLEN=listlength �

�
CDATA=clientdata

CDATALEN=clientdatalength
 OUTPUT=outputaddress �

�

OUTLEN=outputlength

UOWTOKEN=uowtoken
 TIMEOUT=300

TIMEOUT=timeoutvalue

�

�
OPTWORD1=processstepoptions

RETNAME=returnname
 �

�
RETTOKEN=returntoken

ECB=ecb
 RETCODE=returncode �

� RSNCODE=reasoncode SCITOKEN=scitoken ��

124 Common Service Layer Guide and Reference

length, the list entry count, and a user data area. The list header user data area

is passed back to the requestor in the list header of the process step output.

Each list entry contains the client name and an optional user data area. The

user data area is passed back to the requestor in a list entry in the process

step output. The list entries must reside in contiguous storage.

 The CSLRPRSL macro maps the process step list.

LISTLEN=symbol

LISTLEN=(r2-r12)

(Required) - specifies a 4-byte input field that contains the process step list

length.

OPTWORD1=symbol

OPTWORD1=(r2-r12)

(Optional) - specifies a 4-byte field containing the process step options.

CSLRMPRS FUNC=DSECT maps the process step options.

X'80000000'

Force process step after error. Take over a process step in progress, if a

process step is already in progress for an IMSplex member that is not

active. Initiate a process and perform a process step if no process is known

to be in progress due to an error such as resource structure failure.

OUTLEN=symbol

OUTLEN=(r2-r12)

(Required) - specifies a 4-byte field to receive the length of the output buffer

returned by the CSLRMPRS request. After being returned by request, this word

contains the length of the buffer pointed to by the OUTPUT= parameter. If no

output is built, the output buffer length is zero. This can occur if an error is

detected before any output can be built.

 It is the caller’s responsibility to release this storage by issuing the CSLSCBFR

FUNC=RELEASE request when it is through with the storage.

OUTPUT=symbol

OUTPUT=(r2-r12)

(Required) - specifies a 4-byte field to receive the address of the variable length

output buffer returned by the CSLRMPRS request. The output buffer contains

the client-defined data from each participating client and indicates the results of

the process step. The output buffer length is returned in the OUTLEN= field.

 If no output is built, the output buffer address is zero. This can occur if an error

is detected before any output can be built.

 The CSLRPRSO macro maps the output buffer that is returned. The output

buffer header contains an eyecatcher, the output buffer length, the CSLRPRSO

version, the header length (offset to start of the process list entries), the list

entry minimum size, the process list entry count, a user data area, and the

CSLRPRSO create timestamp. The user data area contains the user data

passed in the input process step list header.

 Each output buffer entry represents the results from a client that participated in

a process step. Each entry contains the following:

v Entry length

v Client name

v User data - the user data passed in the input process step list

v Process step response length

v Process step response

Chapter 4. CSL Resource Manager 125

v Completion code (CSLRRR) - possible completion codes are:

X'00000000'

Client processes step successfully.

X'00000044'

Client did not respond before the process step timed out.

X'00000048'

The client was not sent the process step request because the client is not

registered to RM.

 This buffer is not preallocated by the caller. After the request returns it, this

word contains the address of a buffer containing information from the IMSplex

members participating in the process. It is the caller’s responsibility to release

this storage by issuing the CSLSCBFR FUNC=RELEASE request when it is through

with the storage.

PARM=symbol

PARM=(r2-r12)

(Required) - specifies the CSLRMPRS parameter list. The length of the

parameter list must be equal to the parameter list length EQU value defined by

RPRS_PARMLN.

PRCNAME=symbol

PRCNAME=(r2-r12)

(Required) - specifies an 8-byte field containing the process name. The process

name is client defined and has no meaning to RM. RM uses the process name

and type to insure that only one instance of a process, with a particular process

type, is in progress at one time.

PRCTOKEN=symbol

PRCTOKEN=(r2-r12)

(Required) - specifies a 16-byte field that contains the process token that

uniquely identifies the process. This token was returned on a successful

CSLRMPRI FUNC=INITIATE request.

 If the IMSplex is defined with a resource structure, the process token is zero.

PRCTYPE=symbol

PRCTYPE=(r2-r12)

(Required) - specifies a 1-byte client-defined process type. Only one process of

a particular type can be in progress at any one time. The process type can be 1

through 255.

RETCODE=symbol

RETCODE=(r2-r12)

(Required) - specifies a 4-byte field to receive the return code on output. SCI

return codes are defined in CSLSRR. SCI return codes are defined in CSLSRR.

Possible return codes are described in Table 48 on page 128.

RETNAME=symbol

RETNAME=(r2-r12)

(Optional) - specifies an 8-byte field to receive the RM name returned to the

caller. This is the CSL member name of the target RM address space to which

SCI sent the request.

RETNAME=symbol

126 Common Service Layer Guide and Reference

|
|
|

RETNAME=(r2-r12)

(Optional) - specifies an 8-byte field to receive the RM name returned to the

caller. This is the CSL member name of the target RM address space to which

SCI sent the request.

RSNCODE=symbol

RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. RM

reason codes are defined in CSLRRR. SCI reason codes are defined in

CSLSRR. Possible reason codes are described in Table 48 on page 128.

SCITOKEN=symbol

SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token

uniquely identifies this connection to SCI. The SCI token was returned by a

successful CSLSCREG FUNC=REGISTER request.

STEPNAME=symbol

STEPNAME=(r2-r12)

(Required) - Specifies an 4-byte field containing the process step name. The

process step name is client-defined and has no meaning to RM. Each process

step must have a different name.

TIMEOUT=timeoutvalue

TIMEOUT=symbol

TIMEOUT=(r2-r12)

(Optional) - Specifies a 4-byte field containing the process step timeout value in

seconds. If the timeout value is reached during the processing of the step,

before all of the participants have responded to the process step, RM

terminates the process step and returns the available responses. If the specified

timeout value is too small, an incomplete response is returned. The TIMEOUT

value ensures a response is returned even if a client processing the step is

unable to respond.

 The default timeout value is 5 minutes (300 seconds). Specify a negative one

(-1) value if no timeout is required for the request.

 The TIMEOUT value is the shortest possible time value that can cause the

process step to time out. RM internally sets a timer to pop every 5 seconds.

When the RM timer pops, RM checks to see if any process step timeout value

has expired. When the process step timeout value is less than the RM timer

value, the actual length of step processing can be longer than the user

specified TIMEOUT value.

UOWTOKEN=symbol

UOWTOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the unit of work token. The

UOW token uniquely identifies an instance of this process and ties all of the

process steps together. The UOW token must match the UOW token specified

on the CSLRMPRI FUNC=INITIATE request. The UOW token is client-defined and

has no meaning to RM.

CSLRMPRS Return and Reason Codes

Table 48 on page 128 lists the return and reason codes that can be returned on a

CSLRMPRS request. Also included is the meaning of a reason code (that is, what

possibly caused it).

Chapter 4. CSL Resource Manager 127

Table 48. CSLRMPRS Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' The request completed successfully.

X'03000008' X'00002000' The client is not registered.

X'00002110' The list version in the list header (PRSL_PVER) is zero,

which is invalid. The list version must be set in the list

header to the maximum list version (PRSL_PVERMAX).

X'00002114' The list header length cannot be zero or greater than

the list length that was passed in. The list header length

(PRSL_HDRLEN) must be set in the list header to the

list header length.

X'00002140' The client data length cannot be zero or greater than

256.

X'00002208' The process type is invalid.

X'0000220C' The process step options are invalid.

X'00002300' The process token is invalid.

X'00002310' The UOW token is invalid.

X'0300000C' X'00003000' The process step succeeded for at least one client, but

not all. Check the completion code in each list entry in

the OUTPUT buffer for individual errors.

X'00003004' The request failed for all clients. Check the completion

code in each list entry in the OUTPUT buffer for

individual errors.

X'03000010' X'00004000' The CQS address space is unavailable. Retry the

request to attempt routing the request to another RM

with an available CQS.

X'00004100' The requested version is not supported. The client

compiled with a version of CSLRMPRS that is not

supported by RM. All RMs must be migrated to a new

release before IMS is migrated to a new release that

uses a new CSLRMPRS function.

X'00004104' The version of the list is not supported. The client

created the process step list at a version that is not

supported by RM. All RMs must be migrated to a new

release before the client is migrated to a new release

that uses a new CSLRMPRS function.

X'00004108' The SCI address space is unavailable. SCI was

available to send the CSLRMPRS request to RM. RM

tried coordinating the process step by sending SCI

messages to the active clients. The SCI request to send

a message to SCI failed for one or more active clients

that did not have an SCI active on the system. Some of

the clients might have successfully processed the step.

X'00004124' A process is not in progress. The process step is

rejected.

X'00004128' A process step is already in progress. The process step

is rejected. If a process step is already in progress

because an error occurred while a previous process

step was in progress, and the owner of that process

step is still active, the next process step must be

specified by the owner of the process step with the

FORCE option.

128 Common Service Layer Guide and Reference

Table 48. CSLRMPRS Return and Reason Codes (continued)

Return Code Reason Code Meaning

X'03000014' X'00005000' Storage allocation for the output buffer failed. The

process step might or might not have succeeded.

X'00005114' The process block allocation failed.

X'00005118' The process step response block allocation failed.

X'00005200' The CQS request resulted in an unexpected error.

X'00005204' The CQS request failed because RM incorrectly built

the request input.

X'00005208' The resource structure is not available.

X'00005210' RM is unable to add the process block to hash table.

X'00005214' RM is unable to find the process block in hash table.

X'00005218' RM is unable to scan the process block in hash table.

X'00005300' An SCI error was encountered. SCI was available to

send the CSLRMPRS request to RM. RM tried

coordinating the process step by sending SCI

messages to the active clients. The SCI request to send

a message to SCI failed with an error for one or more

active clients. Some of the clients might have

successfully processed the step.

CSLRMPRT: Process Terminate

Use the CSLRMPRT request to terminate an IMSplex-wide process. Any client that

is participating in the process can issue a CSLRMPRT FUNC= TERMINATE request

to terminate the process.

This request is supported in assembler language.

CSLRMPRT Syntax

The syntax for the CSLRMPRT request follows.

DSECT Syntax: Use the DSECT function of a CSLRMPRT request to include

equate (EQU) statements in your program for the length of the CSLRMPRT

parameter list.

�� CSLRMPRT FUNC=DSECT ��

TERMINATE Syntax: Use the TERMINATE function of a CSLRMPRT request to

terminate an IMSplex-wide process.

�� CSLRMPRT FUNC=TERMINATE PARM=parm PRCNAME=processname �

� PRCTOKEN=processtoken PRCTYPE=processtype UOWTOKEN=uowtoken �

�
RETNAME=returnname

RETTOKEN=returntoken
 RETCODE=returncode �

� RSNCODE=reasoncode SCITOKEN=scitoken ��

Chapter 4. CSL Resource Manager 129

CSLRMPRT Parameters

The parameters for the CSLRMPRT request follow.

PARM=symbol

PARM=(r2-r12)

(Required) - specifies the CSLRMPRT parameter list. The length of the

parameter list must be equal to the parameter list length EQU value defined by

RPRT_PARMLN.

PRCNAME=symbol

PRCNAME=(r2-r12)

(Required) - specifies an 8-byte field containing the process name. The process

name is client defined and has no meaning to RM. RM uses the process name

and the process type to insure that only one instance of a process of a

particular process type is in progress at one time.

PRCTOKEN=symbol

PRCTOKEN=(r2-r12)

(Required) - specifies a 16-byte field that contains the process token that

uniquely identifies the process. This token was returned on a successful

CSLRMPRI FUNC=INITIATE request.

 If the IMSplex is defined with a resource structure, the process token is zero.

PRCTYPE=symbol

PRCTYPE=(r2-r12)

(Required) - specifies a 1-byte client-defined process type. Only one process of

a particular type can be in progress at any one time. The process type can be 1

through 255.

RETCODE=symbol

RETCODE=(r2-r12)

(Required) - specifies a 4-byte field to receive the return code on output. SCI

return codes are defined in CSLSRR. RM does not return a response to

CSLRMPRT.

RETNAME=symbol

RETNAME=(r2-r12)

(Optional) - Specifies an 8-byte field to receive the name of the RM address

space to which SCI sent the process terminate request.

RETTOKEN=symbol

RETTOKEN=(r2-r12)

(Optional) - Specifies a 16-byte field to receive the SCI token of the RM

address space to which SCI sent the process terminate request.

RSNCODE=symbol

RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. SCI

reason codes are defined in CSLSRR. RM does not return a response to the

CSLRMPRT request.

SCITOKEN=symbol

SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token

uniquely identifies this connection to SCI. The SCI token was returned by a

successful CSLSCREG FUNC=REGISTER request.

UOWTOKEN=symbol

UOWTOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the unit of work token. The

130 Common Service Layer Guide and Reference

UOW token uniquely identifies an instance of this process and ties all of the

process steps together. The UOW token must match the UOW token specified

on the CSLRMPRI FUNC=INITIATE request. The UOW token is client-defined and

has no meaning to RM.

CSLRMPRT Return and Reason Codes

CSLRMPRT is sent to the target client address space using the SCI message

protocol. All return and reason codes that are applicable to the CSLSCMSG request

can be returned on a CSLRMPRT request. CSLRMPRT does not issue any

additional return and reason codes.

CSLRMQRY: Query Resources

Use the CSLRMQRY request to query one or more uniquely named resources on a

resource structure.

This request is supported in assembler language.

CSLRMQRY Syntax

The syntax for the CSLRMQRY request follows.

CSLRMQRY DSECT Syntax: Use the DSECT function of a CSLRMQRY request

to include the following inputs and outputs in your program:

v Equate (EQU) statements for the length of the CSLRMQRY parameter list

v The CSLRMQRY return codes, reason codes, and completion codes

v The CSLRQRYL DSECT to map the input query list

v The CSLRQRYO DSECT to map the query output

�� CSLRMQRY FUNC=DSECT ��

CSLRMQRY QUERY Syntax: Use the QUERY function of a CSLRMQRY request

to query one or more uniquely named resources on a resource structure.

�� CSLRMQRY FUNC=QUERY PARM=parm LIST=querylist �

� LISTLEN=querylistlength

RETNAME=returnname
 �

� OUTPUT=output OUTLEN=outputlength

RETTOKEN=returntoken
 �

�
 PROTOCOL=RQST

RETCODE=returncode

ECB=ecb

�

� RSNCODE=reasoncode SCITOKEN=scitoken ��

CSLRMQRY Parameters

The parameters for the CSLRMQRY request follow.

ECB=symbol

Chapter 4. CSL Resource Manager 131

ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS ECB used for asynchronous

requests. When the request is complete, the ECB specified is posted. If an ECB

is not specified, the task is suspended until the request is complete. If an ECB

is specified, the invoker of the request must issue a WAIT (or equivalent) after

receiving control from CSLRM QRY before using or examining any data

returned by this request (including the RETCODE and RSNCODE fields).

LIST=symbol

LIST=(r2-r12)

(Required) - Specifies the query resource list built by the caller. Each list entry

is a separate query request. The list length can vary, depending upon the

number of list entries.

 The list contains a header and one or more list entries. The list entries must

reside in contiguous storage. Each query list entry contains the following:

v Resource name - the client-defined name of the resource. The resource

name can be a wildcard name. If it is a wildcard name, all resources that

match the wildcard name are returned.

v Resource type - the resource type is a client-defined physical grouping of

resources on the resource structure. Valid values are 1-255.

v Query options (optional) - options that indicate special processing to perform

for the query.

v Owner (optional) - the owner of the resource. If you specify the owner, the

resource is returned only if the resource name and owner match a resource

on the resource structure. Specify binary zeroes to omit the owner, and the

query returns the owner name in the RQYO_OWNER field in the output list

entry.

v User (optional) - a user field set by the caller, which is passed back in the

output list entry associated with the input list entry.

LISTLEN=symbol

LISTLEN=(r2-r12)

(Required) - specifies the 4-byte query resource list length.

OUTLEN=symbol

OUTLEN=(r2-r12)

(Required) - Specifies a 4-byte field to receive the length of the output buffer

returned by the CSLRMQRY request. OUTLEN contains the length of the output

buffer pointed to by the OUTPUT parameter. The length of the output data

(header and entries) is passed in the output header data, mapped by

CSLRQRYO.

OUTPUT=symbol

OUTPUT=(r2-r12)

(Required) - Specifies a 4-byte field to receive the address of the variable

length output returned by the CSLRMQRY request. The output contains a

header and one or more query entries for resource queries that were attempted.

The output length is returned in the OUTLEN field.

 The output address is zero if no output was built, for example, if an error was

detected before any output could be built.

 The CSLRQRYO macro maps the output that is returned. The output contains a

header and one or more list entries. The header contains the following:

v an eyecatcher

v the output length

v CSLRQRYO version

132 Common Service Layer Guide and Reference

|
|
|
|
|

|
|

|
|
|

|
|

|
|

|
|
|
|
|

|
|

v CSLRQRYO header length (offset to start of entries)

v minimum entry length (offset to DATA2)

v resource entry count

v timestamp

 Each output entry represents a resource query that was attempted. Each entry

contains the following:

v Output entry length - the list entry length can vary, depending upon whether

DATA2 is returned.

v Name type - the name type is a client-defined value associated with a

resource type that ensures uniqueness of client-defined resource names

within a name type. Valid values are 1-255.

v Resource name - client-defined name of the resource.

v Resource type - a client-defined physical grouping of resources on the

resource structure. Valid values are 1-255. IMS’s resources types are

mapped by the CSLA_RSRCTYPE byte in the DFSCSLA MACRO. Some

examples of IMS resource types are transactions, lterms, msnames, CPIC

transactions, APPC descriptors, and user IDs.

v Version - the resource version, which is the number of times the resource

has been updated.

v DATA2 flag byte - flag byte indicating if DATA2 was read.

v Resource name status flag - the resource name status indicates how the

resource name in the query output list entry is associated with the input

resource parameter. This enables you to tie the input resource parameter to

the output query list entries that are generated. The following resource name

status are possible:

Specific parameter

A specific resource name was specified. This query list entry contains the

resource name that matches the input parameter.

Wildcard Parameter

A wildcard parameter was specified. This query list entry contains the

wildcard parameter and a completion code. This query list entry does not

contain information about a specific resource. If the completion code is

zero, one or more wildcard match list entries follow.

Wildcard match

A wildcard parameter was specified. This entry contains information

about one resource that matches the input wildcard parameter. All

wildcard match list entries follow contiguously after a wildcard parameter

list entry.

v Owner - owner of a resource.

v DATA1- A small, fixed-length amount of client data, contained in the adjunct

area of a data entry and associated with an existing resource. IMS maintains

information about an IMS resource in DATA1. IMS maps DATA1 contents

with the DFSRMD1 DSECT in the DFSRMD macro. The DFSRMD1 DSECT

contains unique DATA1 mappings based on the resource type, including

CPIC transactions, APPC descriptors, lterms, msnames, nodes, transactions,

users, and user IDs.

v DATA2 length - length of a large piece of client data associated with an

existing resource, if DATA2 exists and the option to read DATA2 was set.

v Optional User field - optional 4 byte user field passed back to the caller in the

output list entry associated with the input list entry.

Chapter 4. CSL Resource Manager 133

|
|
|
|
|

|
|
|
|
|
|
|

v DATA2 - A large, variable-length amount of client data, contained in one or

more data elements of a data entry and associated with an existing resource

(if DATA2 exists and the option to read DATA2 was set). The maximum size

of DATA2 is 61 312 bytes (X'EF80'). For some resource types, IMS maintains

information about those resources in DATA2; IMS maps DATA2 contents with

the DFSRMD2 DSECT in the DFSRMD macro. The DFSRMD2 DSECT

contains unique DATA2 mappings based on the resource type, including

CPIC transactions, APPC descriptors, lterms, msnames, nodes, transactions,

users, and userids. Refer to the DFSRMD2 DSECT for the full list of

resource types.

v Completion code for the query request - completion codes are mapped by

CSLRRR. Possible completion codes are:

X'00000000'

Query request succeeded. At least one resource matching the query

parameters is returned in the output buffer specified by OUTPUT=.

X'00000004'

No resources found.

X'00000008'

Invalid resource type.

X'0000000C'

Invalid name type.

X'00000024'

Resource structure is unavailable.

X'00000034'

Invalid options specified.

X'00000038'

Query failed because of CQS internal error.

X'0000003C'

Query failed because RM incorrectly built the CQSBRWSE list entry.

 The output buffer is not preallocated by the caller. After the request returns it,

this word contains the address of a buffer containing the query output. It is the

caller’s responsibility to release this storage by issuing the CSLSCBFR

FUNC=RELEASE request when it is through with the storage. The length of the

buffer is returned in the OUTLEN= field.

PARM=symbol

PARM=(r2-r12)

(Required) - Specifies the CSLRMQRY parameter list. The length of the

parameter list must be equal to the parameter list length EQU value defined by

RQRY_PARMLN.

PROTOCOL=RQST

(Optional) - SCI protocol for sending the request to RM. RQST sends the query

request using SCI request interface.

RETCODE=symbol

RETCODE=(r2-r12)

(Required) - specifies a 4-byte field to receive the return code on output. RM

return codes are defined in CSLRRR. SCI return codes are defined in CSLSRR.

Possible return codes are described in Table 49 on page 135.

RETNAME=symbol

134 Common Service Layer Guide and Reference

|
|
|
|
|
|
|
|
|
|

RETNAME=(r2-r12)

(Optional) - Specifies an 8-byte field to receive the RM name returned to the

caller. This is the CSL member name of the target RM address space to which

SCI sent the request.

RETTOKEN=symbol

RETTOKEN=(r2-r12)

(Optional) - Specifies a 16-byte field to receive RM’s SCI token returned to the

caller. This is the SCI token for the target RM address space to which SCI sent

the request.

RSNCODE=symbol

RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. RM

reason codes are defined in CSLRRR. SCI reason codes are defined in

CSLSRR. Possible reason codes are described in Table 49.

SCITOKEN=symbol

SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token

uniquely identifies this connection to SCI. The SCI token was returned by a

successful CSLSCREG FUNC=REGISTER request.

CSLRMQRY Return and Reason Codes

Table 49 lists the return and reason codes that can be returned on a CSLRMQRY

request. Also included is the meaning of a reason code (that is, what possibly

caused it).

 Table 49. CSLRMQRY Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' The request completed successfully.

X'03000004' X'00001000' No resources were found.

X'03000008' X'00002000' The client is not registered.

X'00002100' The query-list length is invalid.

X'00002108' The query-list address is invalid.

X'00002110' The list version in the list header (QRYL_PVER) is

zero, which is invalid. The list version must be set in the

list header to the maximum list version

(QRYL_PVERMAX).

X'00002114' The list header length cannot be zero or greater than

the list length that was passed in. The list header length

(QRYL_HDRLEN) must be set in the list header to the

list header length.

X'00002404' No resource structure is defined.

X'0300000C' X'00003000' The request succeeded for at least one list entry, but

not all. Check the completion code in each query list

entry in the OUTPUT buffer for individual errors.

X'00003004' The request failed for all entries. Check the completion

code in each query list entry in the OUTPUT buffer for

individual errors.

Chapter 4. CSL Resource Manager 135

Table 49. CSLRMQRY Return and Reason Codes (continued)

Return Code Reason Code Meaning

X'03000010' X'00004000' The CQS address space is unavailable. Retry the

request again to attempt routing the request to another

RM with an available CQS.

X'00004100' The requested version is not supported. The client

compiled with a version of CSLRMQRY that is not

supported by RM. All RMs must be migrated to a new

release before IMS is migrated to a new release that

uses a new CSLRMQRY function.

X'00004104' The list version is not supported. The client created the

query list at a version that is not supported by RM. All

RMs must be migrated to a new release before the

client is migrated to a new release that uses a new

CSLRMQRY function.

X'03000014' X'00005000' Storage allocation for the query output buffer failed.

X'00005108' Storage allocation for the CQSBRWSE buffer failed.

X'00005200' The CQS request resulted in an unexpected error.

X'00005204' The CQS request failed because RM incorrectly built

the request input.

CSLRMREG: Register Clients

Use the CSLRMREG request to register a client to RM and, optionally, to register

the client’s resource types and associated name types. The client must be

authorized to issue a CSLRMREG request. You cannot register a client if an

IMSplex-wide process is in progress.

You must register a client to RM before the client can issue any other RM requests.

After the client is registered, it must participate in any IMSplex-wide processes that

are performed. You must register the client to all RMs that are active in the

IMSplex. If registration to an RM fails, you must deregister the client from any RMs

to which the client had successfully registered. If an RM fails, register with it when it

comes back up.

You can register the same client multiple times. For example, you might need to

specify the resource list for the client after the client is already registered.

Optionally, register resource types to RM along with the client to define the resource

types to RM and associate a name type with each resource type. You must register

resource types before you can specify them in other requests. You cannot register

the client if the resource type and name type associations do not match those

already registered previously.

Resource-processing clients, such as the IMS control region, issue this request.

This request is supported in assembler language.

CSLRMREG Syntax

The syntax for the CSLRMREG request follows.

CSLRMREG DSECT Syntax: Use the DSECT function of a CSLRMREG request

to include the following inputs and outputs in your program:

v Equate (EQU) statements for the length of the CSLRMREG parameter list

136 Common Service Layer Guide and Reference

v The CSLRMREG return codes, reason codes, and completion codes

v The CSLRREGL DSECT to map the input registration list

v The CSLRREGO DSECT to map the register output

�� CSLRMREG FUNC=DSECT ��

CSLRMREG REGISTER Syntax: Use the CSLRMREG request to register a client

to RM and, optionally, to register the client’s resource types and associated name

types to RM.

�� CSLRMREG FUNC=REGISTER RMNAME=rmname OUTLEN=outputlength �

� OUTPUT=output

LIST=reglist

LISTLEN=reglistlength
 �

� PARM=parm RETCODE=returncode

ECB=ecb
 �

� RSNCODE=reasoncode SCITOKEN=scitoken ��

CSLRMREG Parameters

The parameters for the CSLRMREG request follow.

ECB=symbol

ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS ECB used for asynchronous

requests. When the request is complete, the ECB specified is posted. If an ECB

is not specified, the task is suspended until the request is complete. If an ECB

is specified, the invoker of the request must issue a WAIT (or equivalent) after

receiving control from CSLRM REG before using or examining any data

returned by this request (including the RETCODE and RSNCODE fields).

LIST=symbol

LIST=(r2-r12)

(Optional) - Specifies the registration list built by the caller. Each list entry is a

separate resource type registration. If a registration list is specified when no

resource structure is defined, it is ignored.

 The CSLRREGL macro maps the registration list entry. The list contains a

header and one or more list entries. The list entries must reside in contiguous

storage. Each registration list entry contains the following:

v Resource type

v Name type

LISTLEN=symbol

LISTLEN=(r2-r12)

(Optional) - Specifies the 4-byte registration list length. LISTLEN is required if

LIST is specified.

OUTLEN=symbol

OUTLEN=(r2-r12)

(Required) - Specifies a 4-byte field to receive the length of the output returned

by the CSLRMREG request. OUTLEN contains the length of the output pointed

to by the OUTPUT= parameter.

 The output length is zero if no output is built, for example, if an error is detected

before any output can be built.

Chapter 4. CSL Resource Manager 137

OUTPUT=symbol

OUTPUT=(r2-r12)

(Required) - Specifies a 4-byte field to receive the address of the variable

length output returned by the CSLRMREG request. The output contains a

header and zero, one, or more registration entries for registrations that were

attempted. The output length is returned in the OUTLEN= field.

 The output address is zero if no output was built, for example, if an error was

detected before any output could be built.

 The CSLRREGO macro maps the output that is returned. The output contains a

header and zero, one, or more list entries. The output header contains the

following:

v Eyecatcher

v Output length

v CSLRREGO version

v CSLRREGO header length (offset to start of entries)

v CSLRREGO entry length

v Registration list count

v Timestamp

v Registration status

v Structure version

 Each output entry represents a registration request that was attempted. Each

entry contains the following:

v Resource type

v Name type

v Completion code for the registration request. Completion codes are mapped

by CSLRRR. Possible completion codes are:

X'00000000'

Register succeeded.

X'00000008'

Invalid resource type. The resource type cannot be zero.

X'0000000C'

Invalid name type. The name type cannot be zero, or the resource type is

already defined with a different name type.

PARM=symbol

PARM=(r2-r12)

(Required) - Specifies the CSLRMREG parameter list. The length of the

parameter list must be equal to the parameter list length EQU value defined by

RREG_PARMLN.

RETCODE=symbol

RETCODE=(r2-r12)

(Required) - specifies a 4-byte field to receive the return code on output. RM

return codes are defined in CSLRRR. SCI return codes are defined in CSLSRR.

Possible return codes are described in Table 50 on page 139.

RMNAME=symbol

RMNAME=(r2-r12)

(Required) - Specifies an 8-byte RM name to which to send the registration

request.

138 Common Service Layer Guide and Reference

RSNCODE=symbol

RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. RM

reason codes are defined in CSLRRR. SCI reason codes are defined in

CSLSRR. Possible reason codes are described in Table 50.

SCITOKEN=symbol

SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token

uniquely identifies this connection to SCI. The SCI token was returned by a

successful CSLSCREG FUNC=REGISTER request.

CSLRMREG Return and Reason Codes

Table 50 lists the return and reason codes that can be returned on a CSLRMREG

request. Also included is the meaning of a reason code (that is, what possibly

caused it).

 Table 50. CSLRMREG Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' The request completed successfully.

X'03000004' X'00001100' The request completed successfully but the LIST is

ignored. No resource structure is defined.

X'03000008' X'00002100' The registration-list length is invalid.

X'00002108' The registration-list address is invalid.

X'00002110' The list version in the list header (REGL_PVER) is

zero, which is invalid. The list version must be set in the

list header to the maximum list version

(REGL_PVERMAX).

X'00002114' The list header length cannot be zero or greater than

the list length that was passed in. The list header length

(REGL_HDRLEN) must be set in the list header to the

list header length.

X'0300000C' X'00003000' The request is valid for at least one list entry, but not

all. The registration for the valid list entries is not

performed and the client registration is rejected. Check

the completion code in each list entry in the OUTPUT

buffer for individual errors.

X'00003004' The request failed for all entries. Check the completion

code in each list entry in the OUTPUT buffer for

individual errors.

X'03000010' X'00004010' The client is not authorized.

X'00004100' The requested version is not supported. The client

compiled with a version of CSLRMREG that is not

supported by RM. All RMs must be migrated to a new

release before IMS is migrated to a new release that

uses a new CSLRMREG function.

X'00004104' The list version is not supported. The client created the

registration list at a version that is not supported by

RM. All RMs must be migrated to a new release before

the client is migrated to a new release that uses a new

CSLRMREG function.

Chapter 4. CSL Resource Manager 139

Table 50. CSLRMREG Return and Reason Codes (continued)

Return Code Reason Code Meaning

X'03000014' X'00005000' Storage allocation for the register output buffer failed.

X'00005100' Storage allocation for CQSUPD buffer failed.

X'00005200' CQS request resulted in an unexpected error.

X'00005204' CQS request failed because RM incorrectly built

request input.

X'00005110' The client block allocation failed.

CSLRMUPD: Update Resources

CSLRMUPD creates a resource if it does not exist, or updates a resource if it does

exist (as long as the version specified matches the version of the resource). A

resource can be created or updated with or without client data.

This request is supported in assembler language.

CSLRMUPD Syntax

The syntax for the CSLRMUPD request follows.

CSLRMUPD DSECT Syntax: Use the DSECT function of a CSLRMUPD request

to include the following inputs and outputs in your program:

v Equate (EQU) statements for the length of the CSLRMUPD parameter list

v The CSLRMUPD return codes, reason codes, and completion codes

v The CSLRUPDL DSECT to map the input update list

v The CSLRUPDO DSECT to map the update output

�� CSLRMUPD FUNC=DSECT ��

CSLRMUPD UPDATE Syntax: Use the CSLRMUPD request to create or update a

uniquely named resource on a resource structure.

�� CSLRMUPD FUNC=UPDATE PARM=parm LIST=updlist LISTLEN=updlistlength �

� OUTPUT=output OUTLEN=outputlength

ECB=ecb

RETNAME=returnname
 �

� RETCODE=returncode RSNCODE=reasoncode

RETTOKEN=returntoken
 �

� SCITOKEN=scitoken ��

CSLRMUPD Parameters

The parameters for CSLRMUPD follow.

ECB=symbol

ECB=(r2-r12)

(Optional) - Specifies the address of a z/OS ECB used for asynchronous

requests. When the request is complete, the ECB specified is posted. If an ECB

is not specified, the task is suspended until the request is complete. If an ECB

is specified, the invoker of the request must issue a WAIT (or equivalent) after

receiving control from CSLRM UPD before using or examining any data

returned by this request (including the RETCODE and RSNCODE fields).

140 Common Service Layer Guide and Reference

LIST=symbol

LIST=(r2-r12)

(Required) - Specifies the update resource list built by the caller. Each list entry

is a separate update request. The list length can vary, depending upon the

number of list entries and whether they contain DATA2.

 The CSLRUPDL macro maps the update resource list entry. The list contains a

header and one or more list entries. The list entries must reside in contiguous

storage. Each update list entry contains the following:

v Entry length - the update list entry length. The list entry length can vary,

depending upon whether DATA2 is specified.

v Resource name - client-defined name of the resource.

v Resource type - the resource type is a client-defined physical grouping of

resources on the resource structure. Valid values are 1-255.

v Update options - options that indicate special processing to perform for the

update.

v Version - the resource version, which is the number of times the resource

has been updated. The version must match the resource’s version for an

existing resource for the update to succeed. The version must be zero to

create a resource.

v Owner - owner of the resource.

v DATA1 - a small piece of client data (fixed length, contained in the adjunct

area of a data entry) for the resource to be updated.

v DATA2 length - DATA2 length, if DATA2 is specified.

v DATA2 - a large piece of client data (variable length, contained in one or

more data elements of a data entry) associated with the resource to be

updated. DATA2 is optional. The maximum size of DATA2 is 61312 bytes

(X'EF80').

LISTLEN=symbol

LISTLEN=(r2-r12)

(Optional) - Specifies the 4-byte update resource list length. LISTLEN is

required if LIST is specified.

OUTLEN=symbol

OUTLEN=(r2-r12)

(Required) - Specifies a 4-byte field to receive the length of the output returned

by the CSLRMUPD request. OUTLEN contains the length of the output pointed

to by the OUTPUT= parameter.

 The output length is zero if no output is built, for example, if an error is detected

before any output can be built.

OUTPUT=symbol

OUTPUT=(r2-r12)

(Required) - Specifies a 4-byte field to receive the address of the variable

length output returned by the CSLRMUPD request. The output contains a

header and one or more update entries for resource updates that were

attempted. The output length is returned in the OUTLEN= field.

 The output address is zero if no output was built, for example, if an error was

detected before any output could be built.

 The CSLRUPDO macro maps the output that is returned. The output contains a

header and one or more list entries. The output header contains the following:

v Eyecatcher

v Output length

Chapter 4. CSL Resource Manager 141

v CSLRUPDO version

v Timestamp

v Resource entry count

v CSLRUPDO header length (offset to start of entries)

v Minimum entry length (offset to DATA2)

Each output entry represents a resource update that was attempted. Each entry

contains the following:

v Output entry length - the list entry length can vary, depending upon whether

DATA2 is returned.

v Resource type

v Name type - the name type is a client-defined value associated with a

resource type that ensures uniqueness of client-defined resource names

within a name type. Valid values are 1-255.

v Resource name

v Version - new resource version, if update succeeded, or the resource version

of an existing resource, if the failed because of a version mismatch.

v Owner - resource owner of an existing resource, if the update failed because

of a version mismatch and the option to read the owner was set.

v DATA1 - a small piece of client data (fixed length, contained in the adjunct

area of a data entry) associated with an existing resource, if the update failed

because of a version mismatch and the option to read DATA1 was set.

v DATA2 length - length of large piece of client data associated with an existing

resource, if the update failed because of a version mismatch, DATA2 exists,

and the option to read DATA2 was set.

v DATA2 - a large piece of client data (variable length, contained in one or

more data elements of a data entry) associated with an existing resource, if

the update failed because of a version mismatch, DATA2 exists, and the

option to read DATA2 was set. The maximum size of DATA2 is 61312 bytes

(X'EF80').

v Completion code for the update request - completion codes are mapped by

CSLRRR. Possible completion codes are:

X'00000000'

Update request succeeded.

X'00000008'

Invalid resource type.

X'00000010'

Version mismatch. Resource already exists and version specified on input

did not match.

X'00000014'

Resource already exists as a different resource type.

X'00000018'

Resource type is not registered. The resource type must be registered

using a CSLRMREG request.

X'0000001C'

Resource structure is full.

X'00000024'

Resource structure is unavailable.

142 Common Service Layer Guide and Reference

X'00000038'

Update failed because of CQS internal error.

X'0000003C'

Update failed because RM incorrectly built the CQSUPD list entry.

X'00000040'

Version mismatch. The resource already exists and the version specified on

input did not match. The requestor requested that DATA2 be passed back,

but RM encountered an error reading DATA2.

 The output buffer is not preallocated by the caller. After the request returns it,

this word contains the address of a buffer containing the update output. It is the

caller’s responsibility to release this storage by issuing the CSLSCBFR

FUNC=RELEASE request when it is through with the storage. The length of the

output is returned in the OUTLEN= field.

PARM=symbol

PARM=(r2-r12)

(Required) - Specifies the CSLRMUPD parameter list. The length of the

parameter list must be equal to the parameter list length EQU value defined by

RUPD_PARMLN.

RETCODE=symbol

RETCODE=(r2-r12)

(Required) - specifies a 4-byte field to receive the return code on output. RM

return codes are defined in CSLRRR. SCI return codes are defined in CSLSRR.

Possible return codes are described in Table 51 on page 144.

RETNAME=symbol

RETNAME=(r2-r12)

(Optional) - Specifies an 8-byte field to receive the RM name returned to the

caller. This is the CSL member name of the target RM address space to which

SCI sent the request.

RETTOKEN=symbol

RETTOKEN=(r2-r12)

(Optional) - Specifies a 16-byte field to receive RM’s SCI token returned to the

caller. This is the SCI token for the target RM address space to which SCI sent

the request.

RSNCODE=symbol

RSNCODE=(r2-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. RM

reason codes are defined in CSLRRR. SCI reason codes are defined in

CSLSRR. Possible reason codes are described in Table 51 on page 144.

SCITOKEN=symbol

SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token

uniquely identifies this connection to SCI. The SCI token was returned by a

successful CSLSCREG FUNC=REGISTER request.

CSLRMUPD Return and Reason Codes

Table 51 on page 144 lists the return and reason codes that can be returned on a

CSLRMUPD request. Also included is the meaning of a reason code (that is, what

possibly caused it).

Chapter 4. CSL Resource Manager 143

Table 51. CSLRMUPD Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' The request completed successfully.

X'03000008' X'00002000' The client is not registered.

X'00002100' The update-list length is invalid.

X'00002108' The update-list address is invalid.

X'0000210C' One of the list entries contains one of the following

invalid list entry lengths:

v Zero length

v Smaller than the minimum list entry length

v Beyond the end of the list passed in

v Not on a fullword boundary

RM assumes that the rest of the list is invalid.

X'00002110' The list version in the list header (UPDL_PVER) is

zero, which is invalid. The list version must be set in the

list header to the maximum list version

(UPDL_PVERMAX).

X'00002114' The list header length cannot be zero or greater than

the list length that was passed in. The list header length

(UPDL_HDRLEN) must be set in the list header to be

the list header length.

X'00002200' One of the list entries contains an invalid resource type,

such as zero. RM assumes the rest of the list is invalid.

X'0000220C' One of the entries in the list contains one or more

invalid update options. RM assumes the rest of the list

is invalid.

X'00002404' No resource structure is defined.

X'0300000C' X'00003000' The request succeeded for at least one list entry, but

not all. Check the completion code in each list entry in

the OUTPUT buffer for individual errors.

X'00003004' The request failed for all entries. Check the completion

code in each list entry in the OUTPUT buffer for

individual errors.

X'00003008' The request failed for one or more list entries and all

failures were version mismatches. Check the

completion code in each list entry in the OUTPUT buffer

for individual errors.

X'03000010' X'00004000' The CQS address space is unavailable. Retry the

request to attempt routing the request to another RM

with an available CQS.

X'00004100' The requested version is not supported. The client

compiled with a version of CSLRMUPD that is not

supported by RM. All RMs must be migrated to a new

release before IMS is migrated to a new release that

uses a new CSLRMUPD function.

X'00004104' The list version is not supported. The client created the

update list at a version level that is not supported by

RM. All RMs must be migrated to a new release before

the client is migrated to a new release that uses a new

CSLRMUPD function.

144 Common Service Layer Guide and Reference

Table 51. CSLRMUPD Return and Reason Codes (continued)

Return Code Reason Code Meaning

X'03000014' X'00005000' Storage allocation for the output buffer failed. The

resource updates might or might not have succeeded.

X'00005100' Storage allocation for CQSUPD buffer failed.

X'00005200' CQS request resulted in unexpected error.

X'00005204' The CQS request failed because RM incorrectly built

the request input.

CSL RM Directives

An RM directive is a function that RM defines that can be sent as a message to RM

clients, informing the RM clients of work to be processed. After a resource

processing client is registered to RM, RM can direct that client to perform RM

functions, or directives. RM issues the CSLSCMSG request to send a directive to a

client. A resource processing client is any system that manages resources and uses

RM to manage global information about those resources.

RM directives are always issued in message protocol (PROTOCOL=MSG), that is,

asynchronously; RM therefore expects no response from the RM client, and it

continues processing without waiting for a response. The RM client is responsible

for determining whether or not to take any action in response to the directive. If the

client does not respond, the directive times out.

The CSLRMDIR macro maps the RM directives. The SCI Input exit routine’s

INXP_MBRPLPTR field points to the CSLRMDIR parameter list. For more

information on the SCI Input exit parameter list, see “CSL SCI Input Exit Parameter

List” on page 164.

RM directives are defined in the CSLRMDIR macro, which includes the following:

v Repopulate structure (RDIR_STRPOPD)

v Structure failed (RDIR_STRFAILD)

v Process step (RDIR_PRSTEPD)

v Process step response (RDIR_PRRESPD)

The directives and their parameters are described in these topics:

v “CSL RM Repopulate Structure Directive”

v “CSL RM Structure Failed Directive” on page 146

v “CSL RM Process Step Directive” on page 146

v “CSL RM Process Step Response Directive” on page 148

CSL RM Repopulate Structure Directive

If an RM detects a structure failure, it sends the Repopulate Structure directive to

all resource processing clients after the structure fails and is reallocated. The client

then repopulates the structure. A client can receive this directive from all RMs to

which it is registered. If it receives directives from multiple RMs to repopulate the

structure after having already done so, it can ignore those requests after confirming

that the directives apply to the same structure name and version.

The parameters for the Repopulate Structure directive follow.

Chapter 4. CSL Resource Manager 145

RDIR_STRPOP

Identifies the start of the repopulate structure directive.

RDIR_STNAMLEN=length

Contains the length of the structure name.

RDIR_STNAMPTR=address

Contains the address of the structure name.

RDIR_STVERLEN=length

Contains the length of the structure version.

RDIR_STVERPTR=address

Contains the address of the structure version.

RDIR_STRPOPLN=length

Contains the length of the repopulate structure.

CSL RM Structure Failed Directive

The Structure Failed directive is sent to a resource processing client when the

resource structure fails and cannot be reallocated. In this situation, the client cannot

make any more resource requests until the problem is corrected. A client can

receive this directive from all RMs to which it is registered. If it receives directives

from multiple RMs, it can ignore duplicate requests after confirming that the

directives apply to the same structure name and version.

The parameters for the Structure Failed directive follow.

RDIR_STRFAIL

Identifies the start of the structure failed directive.

RDIR_SFNAMLEN=length

Contains the length of the structure name.

RDIR_SFNAMPTR=address

Contains the address of the structure name.

RDIR_SFVERLEN=length

Contains the length of the structure version.

RDIR_SFVERPTR=address

Contains the address of the structure version.

RDIR_STRFAILN=length

Contains the length of the structure failed directive.

CSL RM Process Step Directive

The Process Step directive is sent to a resource processing client when a process

step needs to be performed.

The parameters for the Process Step directive follow.

RDIR_PRSTEP

Identifies the start of the Process Step directive.

RDIR_PSTKNLEN=length

Contains the length of the process token (PRCTOKEN), which uniquely

identifies the IMSplex-wide process. PRCTOKEN is returned after the CSLRMPRI

FUNC=INITIATE request successfully completes. PRCTOKEN can be specified

on CSLRMPRS FUNC=PROCESS, CSLRMPRR FUNC=RESPOND, and CSLRMPRT

FUNC=TERMINATE requests.

146 Common Service Layer Guide and Reference

RDIR_PSTKNPTR=address

Contains the address of the PRCTOKEN.

RDIR_PSUOWLEN=length

Contains the length of the UOWTOKEN, a client-defined UOW that uniquely

identifies a process instance. UOWTOKEN also unites the PROCESS INITIATE,

PROCESS RESPOND, and PROCESS TERMINATE steps. UOWTOKEN is

defined by the CSLRMPRI FUNC=INITIATE request and can be specified on

CSLRMPRS FUNC=PROCESS requests.

RDIR_PSUOWPTR=address

Contains the address of the UOWTOKEN.

RDIR_PRCNMLEN=length

Contains the length of the process name (PRCNAME), which is defined by the

CSLRMPRI FUNC=INITIATE request. It can also be specified on the CSLRMPRS

FUNC=PROCESS and CSLRMPRT FUNC=TERMINATE requests.

RDIR_PRCNMPTR=address

Contains the address of the PRCNAME.

RDIR_PRCTYPE

The process type is defined by the CSLRMPRI FUNC=INITIATE request. It can be

specified on the CSLRMPRS FUNC=PROCESS and CSLRMPRT FUNC=TERMINATE

requests. This parameter is passed by value; the length field is always zero.

RDIR_PSNAME

Contains the process step name, which is defined by the CSLRMPRS

FUNC=PROCESS request. This parameter is passed by value; the length field is

always zero.

RDIR_PSDATLEN=length

Contains the length of the process step client data (CDATALEN). The client

data is passed to the participants in the process step. CDATALEN is specified

on the CSLRMPRS FUNC=PROCESS request.

RDIR_PSDATPTR=address

Contains the address of the process step client data (CDATA).

RDIR_CNAMLEN=length

Contains the length of the client name that was registered to SCI by the client

that originated the process step (the process step master).

RDIR_CNAMPTR=address

Contains the address of the client name that was registered to SCI by the client

that originated the process step (the process step master).

RDIR_CTYPE

Identifies the client type that was registered to SCI by the client that originated

the process step (the process step master). This parameter is passed by value;

the length field is always zero.

RDIR_CSTYPLEN

Contains the length of the client subtype that was registered to SCI by the client

that originated the process step (the process step master).

RDIR_CSTYPPTR

Contains the address of the client subtype that was registered to SCI by the

client that originated the process step (the process step master).

RDIR_PRSTEPLN

Contains the length of the process step directive.

Chapter 4. CSL Resource Manager 147

CSL RM Process Step Response Directive

The Process Step Response directive is sent to RM by a client that is responding to

a process step with a CSLRMPRR request.

The parameters for the Process Step Response directive follow.

RDIR_PRRESP

Identifies the start of the process step response directive.

RDIR_PRTKNLEN=length

Contains the length of the process token (PRCTOKEN), which uniquely

identifies the IMSplex-wide process. PRCTOKEN is returned after the CSLRMPRI

FUNC=INITIATE request successfully completes. PRCTOKEN can be specified

on CSLRMPRS FUNC=PROCESS, CSLRMPRR FUNC=RESPOND, and CSLRMPRT

FUNC=TERMINATE requests.

RDIR_PRTKNPTR=address

Contains the address of the of the PRCTOKEN.

RDIR_PROUTLEN=length

Contains the length of the process step response output (OUTPUT). The

response output is passed back to the originator of the process step. OUTPUT

is specified on the CSLRMPRR FUNC=RESPOND request.

RDIR_PROUTPTR=address

Contains the address of the response output (OUTPUT).

RDIR_PRRCLEN=length

Contains the process step response return code (RQSTRC). The return code is

specified by the CSLRMPRR FUNC=RESPOND request.

RDIR_PRRCPTR=address

Contains the address of the process step response return code (RQSTRC).

RDIR_PRRSNLEN=length

Contains the length of the process step response reason code (RQSTRSN),

which is specified by the CSLRMPRR FUNC=RESPOND request.

RDIR_PRRSNPTR=address

Contains the address of the process step response reason code (RQSTRSN).

148 Common Service Layer Guide and Reference

Chapter 5. CSL Structured Call Interface

These topics describe the operations and administrative tasks associated with SCI,

one of three CSL managers:

v “Overview of the CSL SCI”

v “CSL SCI Definition and Tailoring”

v “CSL SCI Administration” on page 154

v “CSL SCI User Exit Routines” on page 155

v “CSL SCI IMSplex Member Exit Routines” on page 162

v “Writing a CSL SCI Client” on page 169

v “CSL SCI Requests” on page 171

Overview of the CSL SCI

SCI allows IMSplex members to communicate with one another. The

communication between IMSplex members can happen within a single z/OS image

or among multiple z/OS images. Individual IMS components do not need to know

where the other components reside or what communication interface to use.

SCI:

v Routes any requests or messages between the IMS control region, OM, RM, and

other members of the IMSplex.

v Registers and deregisters IMSplex members.

v Notifies IMSplex members when a member joins or leaves the IMSplex.

Any IMSplex member that requires SCI services must have an SCI active on its

z/OS image.

CSL SCI Definition and Tailoring

These topics describe how to define and tailor SCI in an IMSplex. You can tailor the

following procedures:

v “CSL SCI Startup Procedure”

v “CSL SCI Execution Parameters” on page 150

v “BPE Considerations for the CSL SCI” on page 151

v “CSL SCI Initialization Parameters PROCLIB Member” on page 152

You can also use the BPE user exit list PROCLIB member to define the BPE user

exit routines to include in the SCI.

CSL SCI Startup Procedure

You can use the SCI startup procedure to dynamically override the settings in the

SCI initialization parameters PROCLIB member. The startup procedure is required,

but setting values for the execution parameters is optional. A sample startup

procedure, shown in Figure 21 on page 150, is called CSLSCI and can be found in

IMS.PROCLIB.

© Copyright IBM Corp. 2002, 2005 149

CSL SCI Execution Parameters

You can specify the following parameters as execution parameters on the EXEC

statement in the SCI startup procedure. Certain parameters that are required for

SCI address space initialization can also be specified in the SCI initialization

parameters PROCLIB member.

ARMRST= Y | N

Specifies whether or not the z/OS Automatic Restart Manager (ARM) should be

used to restart the SCI address space after an abend. Y (yes) specifies that

ARM should be used. The SCI address space is restarted by ARM after most

system failures. N (no) specifies that ARM should not be used. The SCI

address space is not restarted by ARM after any failures.

 This is an optional execution parameter. If specified, it overrides the value

specified in the CSLSIxxx PROCLIB member. If not specified, the value in the

CSLSIxxx PROCLIB member is used.

 For more information on ARM, see “Using the z/OS Automatic Restart Manager

with the CSL” on page 29.

//**

//* SCI Procedure

//*

//*

//* Parameters:

//* BPECFG - Name of BPE member

//* SCIINIT - Suffix for your CSLSIxxx member

//* PARM1 - other override parameters:

//* ARMRST - Indicates if ARM should be used

//* SCINAME - Name of SCI being started

//*

//* example:

//* PARM1=’ARMRST=Y,SCINAME=SCI1’

//*

//***@SCPYRT**

//* *

//* Licensed Materials - Property of IBM *

//* *

//* "Restricted Materials of IBM" *

//* *

//* 5655-C56 (C) Copyright IBM Corp. 2000 *

//* *

//***@ECPYRT**

//*

//CSLSCI PROC RGN=3000K,SOUT=A,

// RESLIB=’IMS.SDFSRESL’,

// BPECFG=BPECONFG,

// SCIINIT=000,

// PARM1=

//*

//SCIPROC EXEC PGM=BPEINI00,REGION=&RGN,

// PARM=’BPECFG=&BPECFG,BPEINIT=CSLSINI0,SCIINIT=&SCIINIT,&PARM1’

//*

//STEPLIB DD DSN=&RESLIB,DISP=SHR

// DD DSN=SYS1.CSSLIB,DISP=SHR

//PROCLIB DD DSN=IMS.PROCLIB,DISP=SHR

//SYSPRINT DD SYSOUT=&SOUT

//SYSUDUMP DD SYSOUT=&SOUT

//*

Figure 21. SCI Sample Startup Procedure

150 Common Service Layer Guide and Reference

BPECFG=

Specifies an 8-character name for the BPE configuration parameters PROCLIB

member. This parameter can be specified only as an execution parameter. If a

PROCLIB member is not specified, BPE uses default values for all parameters.

This parameter is optional. If not specified, the BPE defaults are no user exits,

a trace level of error, and US English as the language.

BPEINIT=CSLSINI0

Specifies the name of the module that contains SCI start up values required by

BPEINI00 to start an SCI address space. For SCI, this value must be

CSLSINI0. This parameter can only be specified as an execution parameter.

This is a required parameter.

FORCE=()

Specifies that SCI is to clean up the global interface storage. FORCE is an

optional parameter and has no default. The keywords are:

ALL SCI should delete all of the global storage, including control blocks and

routines. This keyword is required.

SHUTDOWN

SCI should shut down after cleaning the global storage. This keyword is

optional.

No local IMSplex members can be active when the FORCE keyword is used. If

a member is active, results are unpredictable. Use the FORCE keyword in the

following situations:

v When an IMSplex managed by an SCI on one image will be managed by a

different SCI. For example, PLEX1 is managed by SCI1. If SCI1 becomes

inactive, PLEX1 will be managed by SCI2. Before SCI2 is started, use

FORCE(ALL,SHUTDOWN) on SCI1 to clean the global storage.

v When an SCI will not be reactivated on an image. To clean the global

storage, reactive that SCI one final time using the FORCE(ALL,

SHUTDOWN) keyword.

SCIINIT=

Specifies a 3-character suffix for the SCI initialization parameters PROCLIB

member, CSLSIxxx. This parameter can be specified only as an execution

parameter. The default suffix is 000.

SCINAME=scimbrname

Specifies the name for the SCI address space. This is an optional 1- to

6-character name. If specified, it overrides the value specified in the CSLSIxxx

PROCLIB member. You must specify this parameter either as an execution

parameter or in the CSLSIxxx PROCLIB member. This name is used to create

the SCIID which is used in SCI processing. The 8-character SCIID is the

SCINAME followed by the characters “SC”. Trailing blanks in the SCINAME are

deleted and the SCIID is padded with blanks. For example, if SCINAME=ABC

then SCIID=“ABCSC ”.

BPE Considerations for the CSL SCI

Use the SCI BPE user exit list PROCLIB member to define SCI user exits to BPE.

The member is the PROCLIB member specified by the EXITMBR= parameter in the

BPE configuration parameter PROCLIB member.

Chapter 5. CSL Structured Call Interface 151

Use the user exit list PROCLIB member to specify the modules to be called for

specific exit types. Each user exit type can have one or more exit modules

associated with it. Use the EXITDEF statement to define the user exit modules to

be called for a given exit type.

The BPE user exit PROCLIB member and BPE configuration PROCLIB member

are described in IMS Version 9: Base Primitive Environment Guide and Reference.

A sample SCI user exit list PROCLIB member is shown in Figure 22.

CSL SCI Initialization Parameters PROCLIB Member

Use the CSLSIxxx PROCLIB member to specify parameters related to initialization

of the SCI address space. Certain parameters within CSLSIxxx can be overridden

using SCI execution parameters.

The PROCLIB member consists of one or more fixed-length character records (the

configuration data set can be of any LRECL greater than eight, but it must be fixed

record format). The rightmost-eight columns are ignored but can be used for

sequence numbers or any other notation. Keyword parameters can be coded in the

remaining columns in free format, and can contain leading and trailing blanks. You

can specify multiple keywords in each record; use commas or spaces to delimit

keywords. Statements that begin with a “*” or “#” in column 1 are comment lines

and are ignored. Additionally, comments can be included anywhere within a

statement by enclosing them between “ /* ”and “*/”, for example, /* PROCLIB

comments */. Values coded in this PROCLIB member are case-sensitive. In general,

you should use upper case for all parameters.

��

ARMRST=
 Y

N

��

ARMRST= Y | N

Specifies whether or not the z/OS Automatic Restart Manager (ARM) should be

used to restart the SCI address space after an abend. Y (yes) specifies that

ARM should be used. The SCI address space is restarted by ARM after most

system failures. N (no) specifies that ARM should not be used. The SCI

address space is not restarted by ARM after any failures. For more information

on ARM, see “Using the z/OS Automatic Restart Manager with the CSL” on

page 29.

**

* SCI USER EXIT LIST PROCLIB MEMBER *

**

#---#

DEFINE 1 SCI CLIENT CONNECTION USER EXIT: ZSCLNCN0 #

WITH AN ABEND LIMIT OF 8. #

#---#

EXITDEF(TYPE=CLNTCONN,EXITS=(ZSCLNCN0),ABLIM=8,COMP=SCI)

#---#

DEFINE 1 SCI INIT/TERM USER EXIT: ZSINTM00 #

#---#

EXITDEF(TYPE=INITTERM,EXITS=(ZSINTM00),COMP=SCI)

Figure 22. Sample SCI User Exit List PROCLIB Member

152 Common Service Layer Guide and Reference

�� IMSPLEX(NAME=name) ��

IMSPLEX()

Specifies definitions for an IMSplex managed by SCI. IMSPLEX is a required

parameter. There is no default. Only one IMSPLEX keyword can be specified.

The IMSPLEX keyword must precede the left parenthesis. The IMSPLEX

definition parameters follow:

NAME=

Specifies a 1- to 5-character name that specifies the IMSplex group

name. SCI concatenates this name to “CSL” to create the IMSplex

group name. All OM, RM, SCI, IMS, and other address spaces that are

in the same IMSplex must specify the same name. This is done by

specifying the same name for the IMSPLEX= parameter in the

CSLOIxxx, CSLRIxxx, CSLSIxxx, and DFSCGxxx PROCLIB members

 �� SCINAME=scimbrname ��

SCINAME=scimbrname

Specifies the name for the SCI address space. This is an optional 1-6 character

name. You must specify this parameter either as an execution parameter or in

the CSLSIxxx PROCLIB member. This name is used to create the SCIID which

is used in SCI processing. The 8-character SCIID is the SCINAME followed by

the characters “SC”. Trailing blanks in the SCINAME are deleted and the SCIID

is padded with blanks. For example, if SCINAME=ABC then SCIID=“ABCSC ”.

 ��

FORCE=(

ALL,

)

SHUTDOWN

 ��

FORCE=()

Specifies that SCI is to clean up the global interface storage. FORCE is an

optional parameter and has no default. The keywords are:

ALL SCI should delete all of the global storage, including control blocks and

routines. This keyword is required.

SHUTDOWN

SCI should shut down after cleaning the global storage. This keyword is

optional.

 No local IMSplex members can be active when the FORCE keyword is used. If a

member is active, results are unpredictable. Use the FORCE keyword in the

following situations:

v When an IMSplex managed by an SCI on one image will be managed by a

different SCI. For example, PLEX1 is managed by SCI1. If SCI1 becomes

inactive, PLEX1 will be managed by SCI2. Before SCI2 is started, use

FORCE(ALL,SHUTDOWN) on SCI1 to clean the global storage.

v When an SCI will not be reactivated on an image. To clean the global storage,

reactive that SCI one final time using the FORCE(ALL, SHUTDOWN) keyword.

A sample CSLSIxxx PROCLIB member is shown in Figure 23 on page 154.

Chapter 5. CSL Structured Call Interface 153

CSL SCI Administration

The administrative tasks associated with SCI are described in the following topics:

v “Starting the CSL SCI”

v “Shutting Down the CSL SCI”

v “CSL SCI Security” on page 155

Starting the CSL SCI

SCI is started as a started procedure or with JCL. To start an SCI address space

with a started procedure, issue the z/OS START command as follows:

S scijobname

In this example, scijobname is the job name of the SCI address space to be started.

For information on how to start SCI as a started procedure, see “CSL SCI Startup

Procedure” on page 149.

After SCI is started, if it is abnormally terminated, it can be restarted using the z/OS

Automatic Restart Manager (ARM). SCI must complete initialization for ARM to

restart the address space if an abend occurs. Use of ARM to restart SCI is the

default.

Shutting Down the CSL SCI

Recommendation: Although you can shut down SCI by itself, IBM recommends

that you shut down SCI by shutting down the CSL as one unit. For information

about shutting down the CSL, see “Shutting Down the CSL” on page 26.

To shut down SCI by itself, issue one of the following:

v the CSLZSHUT request, described in “CSLZSHUT: Shut Down Request” on page

26

v the z/OS STOP command:

P scijobname

In this example, scijobname is the job name of the SCI address space to stop. If no

clients are connected to SCI, SCI shuts down. However, if there are registered

members on the local z/OS image, message CSL0300I is issued, and SCI does not

process any new requests or messages from local members. After all in-flight

requests have completed or timed out, the SCI address space terminates.

Before shutting down an SCI, consider the reasons for shutting down and how

shutting down SCI can impact other IMSplex members. For more information, see

“Shutting Down the CSL” on page 26.

**

* SCI INITIALIZATION PROCLIB MEMBER *

**

ARMRST=Y /* ARM should restart SCI on failure */

IMSPLEX(NAME=PLEX1) /* IMSplex name (CSLPLEX1) */

SCINAME=SCI1 /* SCI name (SCIID = SCI1SC) */

Figure 23. Sample CSLSIxxx PROCLIB Member

154 Common Service Layer Guide and Reference

|
|
|
|
|
|
|

|
|
|

|
|
|
|

|

|
|
|
|
|

|
|
|

CSL SCI Security

When a client issues the CSLSCREG request to register with SCI, SCI first

determines whether the address space is authorized to register with SCI. It does

this by issuing a RACROUTE REQUEST=AUTH call. RACF (or an equivalent security

product) checks the user ID of the address space issuing the CSLSCREG request;

the user ID must have at least update authority to register to SCI.

The security administrator can define profiles in the FACILITY class to control SCI

registration. Profile names must be of the form CSL.imsplex_name, where

imsplex_name is:

v The name of the IMSplex with RACF (or an equivalent security product)

protection.

v The IMSplex name as defined on the IMSPLEX parameter in the CSLSIxxx

PROCLIB member, with “CSL” added as a prefix to the name.

Figure 24 defines a profile for SCI to prevent users other than SCIUSER1 and

SCIUSER2 from registering to SCI.

CSL SCI User Exit Routines

SCI user exits allow you to customize and monitor the SCI environment. They are

written and supplied by the user. No sample exits are provided.

SCI uses BPE services to call and manage its user exits. BPE enables you to

externally specify the user exit modules to be called for a particular user exit type

by using EXITDEF= statements in the BPE user exit list PROCLIB members. BPE

also provides a common user exit runtime environment for all user exits. This

environment includes a standard user exit parameter list, callable services, static

and dynamic work areas for the exits, and a recovery environment for user exit

abends. For more information about the BPE user exit interface, see the IMS

Version 9: Base Primitive Environment Guide and Reference.

CSL SCI Client Connection User Exit

This exit is called when a client connects (registers) or disconnects (deregisters)

from SCI. It is also called when a client issues the CSLSCRDY (ready) and the

CSLSCQSC (quiesce) requests. This exit is optional.

This exit is called for the following events:

v After a client has successfully connected to SCI.

v After a client has successfully completed the Ready request to SCI.

v After a client has successfully completed the Quiesce request to SCI.

v After a client has successfully disconnected normally or abnormally from SCI.

This exit is defined as TYPE=CLNTCONN in the EXITDEF statement in the BPE

user exit list PROCLIB member. You can specify one or more user exits of this type.

When this exit is invoked, all user exits of this type are driven in the order specified

by the EXITS= keyword. For more information on how to define user exit module

RDEFINE FACILITY CSL.CSLPLEX1 UACC(NONE)

PERMIT CSL.CSLPLEX1 CLASS(FACILITY) ID(SCIUSER1) ACCESS(UPDATE)

PERMIT CSL.CSLPLEX1 CLASS(FACILITY) ID(SCIUSER2) ACCESS(UPDATE)

SETROPTS CLASSACT(FACILITY)

Figure 24. FACILITY Profile Example

Chapter 5. CSL Structured Call Interface 155

names, see the SCI BPE user exit list PROCLIB member information in the IMS

Version 9: Base Primitive Environment Guide and Reference.

This exit is invoked amode 31 and should be reentrant.

Contents of Registers on Entry

 Register Contents

1 Address of BPE user exit parameter list (mapped by macro BPEUXPL).

13 Address of the first of 2 prechained 72-byte save areas. These save areas

are chained according to standard z/OS save area linkage convention. The

first save area can be used by the exit to save registers on entry. The second

save area is for use by routines called from the user exit.

14 Return address.

15 Entry point of exit routine.

On entry to the Client Connection exit, register 1 points to a standard BPE user exit

parameter list. Field UXPL_EXITPLP in this list contains the address of the SCI

Client Connection user exit parameter list, which is mapped by macro CSLSCLX.

Field UXPL_COMPTYPEP in this list points to the character string “SCI”, indicating

an SCI address space.

Table 52 describes the user exit parameter lists for SCI:

v client connection

v client disconnect

v client ready

v client quiesce

SCI Client Connection User Exit Parameter List: Table 52 lists the user exit

parameter list for SCI client connection. Included are the field name, the offset

value and length, both in hexadecimal, how the field is used, and a brief description

of the field.

 Table 52. SCI Client Connection User Exit Parameter List

Field Name Offset Length Field Usage Description

SCLX_PVER X'00' X'04' Input Parameter list version number (00000001).

SCLX_FUNC X'04' X'04' Input Function code:

v 1 Client connect.

v 2 Client disconnect.

v 3 Client ready.

v 4 Client quiesce.

SCLX_MBRNAME X'08' X'08' Input Client (IMSplex member) name.

SCLX_MBRTYPE X'10' X'02' Input IMSplex member type (mapped by CSLSTPIX).

SCLX_FLAG1 X'12' X'01' Input Flag byte:

v X'80' - Client disconnect is abnormal.

v X'40' - Client is authorized.

X'13' X'01' None Reserved.

SCLX_MBRSTYPE X'14' X'08' Input IMSplex member subtype.

SCLX_MBRVSN X'1C' X'04' Input Member version number.

SCLX_JOBNAME X'20' X'08' Input Member jobname.

SCLX_USERID X'28' X'08' Input Member userid.

156 Common Service Layer Guide and Reference

|

|

|

|

Table 52. SCI Client Connection User Exit Parameter List (continued)

Field Name Offset Length Field Usage Description

SCLX_OSNAME X'30' X'08' Input Name of the member’s operating system.

SCLX_SCITOKEN X'38' X'16' Input Member SCI token.

X'48' X'04' None Reserved.

X'4C' X'04' None Reserved.

Contents of Registers on Exit

 Register Contents

15 Return Code Meaning

0 Always zero

All other registers must be restored.

CSL SCI Initialization/Termination User Exit

This exit is called during SCI address space initialization, IMSplex initialization, SCI

address space normal termination, or IMSplex normal termination. This exit is not

called during SCI address space abnormal termination or IMSplex abnormal

termination. This exit is optional.

This exit is called for the following events:

v After SCI has completed initialization

v After each IMSplex has initialized

v When SCI is terminating normally

v When an IMSplex is terminating normally

This exit is defined as TYPE=INITTERM in the EXITDEF statement in the BPE user

exit list PROCLIB member. You can specify one or more user exits of this type.

When this exit is invoked, all user exits of this type are driven in the order specified

by the EXITS= keyword. For more information on how to define user exit module

names, see the SCI BPE user exit list PROCLIB member information in the IMS

Version 9: Base Primitive Environment Guide and Reference.

This exit is invoked amode 31 and should be reentrant.

Contents of Registers on Entry

 Register Contents

1 Address of BPE user exit parameter list (mapped by macro BPEUXPL).

13 Address of the first of 2 prechained 72-byte save areas. These save areas

are chained according to standard z/OS save area linkage convention. The

first save area can be used by the exit to save registers on entry. The second

save area is for use by routines called from the user exit.

14 Return address.

15 Entry point of exit routine.

On entry to the Initialization/Termination exit, register 1 points to a standard BPE

user exit parameter list. Field UXPL_EXITPLP in this list contains the address of the

Chapter 5. CSL Structured Call Interface 157

|

|

SCI Initialization/Termination user exit parameter list, which is mapped by macro

CSLSITX. Field UXPL_COMPTYPEP in this list points to the character string “SCI”

indicating an SCI address space.

SCI Init/Term User Exit Parameter List--SCI Initialization: Table 53 lists the user

exit parameter list for SCI initialization. Included are the field name, the offset value

and length, both in hexadecimal, how the field is used, and a brief description of the

field.

 Table 53. SCI Init/Term User Exit Parameter List--SCI Initialization

Field Name Offset Length Field Usage Description

SITX_PVER X’00’ X’04’ Input Parameter list version number (00000001).

SITX_FUNC X’04’ X’04’ Input Function code

1 SCI initialization.

SCI Init/Term User Exit Parameter List--SCI Termination: Table 54 lists the user

exit parameter list for SCI termination. Included are the field name, the offset value

and length, both in hexadecimal, how the field is used, and a brief description of the

field.

 Table 54. SCI Init/Term User Exit Parameter List--SCI Termination

Field Name Offset Length Field Usage Description

SITX_PVER X’00’ X’04’ Input Parameter list version number (00000001).

SITX_FUNC X’04’ X’04’ Input Function code

2 SCI normal termination.

SCI Init/Term User Exit Parameter List--IMSplex Initialization: Table 55 lists the

user exit parameter list for IMSplex initialization. Included are the field name, the

offset value and length, both in hexadecimal, how the field is used, and a brief

description of the field.

 Table 55. SCI Init/Term User Exit Parameter List--IMSplex Initialization

Field Name Offset Length Field Usage Description

SITX_PVER X’00’ X’04’ Input Parameter list version number (00000001).

SITX_FUNC X’04’ X’04’ Input Function code

3 IMSplex normal initialization.

SITX_IPLEXNM X’08’ X’08’ Input IMSplex name.

SCI Init/Term User Exit Parameter List--IMSplex Termination: Table 56 lists the

user exit parameter list for IMSplex termination. Included are the field name, the

offset value and length, both in hexadecimal, how the field is used, and a brief

description of the field.

 Table 56. SCI Init/Term User Exit Parameter List--IMSplex Termination

Field Name Offset Length Field Usage Description

SITX_PVER X’00’ X’04’ Input Parameter list version number (00000001).

SITX_FUNC X’04’ X’04’ Input Function code

4 IMSplex normal termination.

158 Common Service Layer Guide and Reference

Table 56. SCI Init/Term User Exit Parameter List--IMSplex Termination (continued)

Field Name Offset Length Field Usage Description

SITX_IPLEXNM X’08’ X’08’ Input IMSplex name.

Contents of Registers on Exit

 Register Contents

15 Return Code Meaning

0 Always zero

All other registers must be restored.

CSL SCI Statistics Available through BPE Statistics User Exit

The BPE Statistics user exit can be used to gather both BPE and SCI statistics.

Refer to the BPE user exit information of IMS Version 9: Base Primitive

Environment Guide and Reference for details on the exit and when it is driven.

The following describes SCI statistics that are available to the BPE Statistics User

Exit and are returned on a CSLZQRY FUNC=STATS request directed to SCI. When

the user exit is driven, field BPESTXP_COMPSTATS_PTR in the BPE Statistics

user exit parameter list, BPESTXP, contains the pointer to the SCI statistics header.

When the CSLZQRY FUNC=STATS request is driven, the OUTPUT= buffer points

to the output area mapped by CSLZQRYO. The output area field ZQYO_STXOFF

contains the offset to the SCI statistics header. The header is mapped by

CSLSSTX.

SCI Statistics Header CSLSSTX

Table 57 lists the SCI Statistics Header CSLSSTX. Included are the field name, the

offset value and length, both in hexadecimal, how the field is used, and a brief

description of the field.

 Table 57. SCI Statistics Header CSLSSTX

Field Name Offset Length Field Usage Description

SSTX_ID X’00’ X’08’ Input Eyecatcher “CSLSSTX”.

SSTX_LEN X’08’ X’04’ Input Length of header.

SSTX_PVER X’0C’ X’04’ Input Header version number (0000001).

SSTX_PLEXCNT X’10’ X’04’ Input Number of IMSplexes for which statistics are

available.

SSTX_STATOFF X’14’ X’04’ Input Offset to statistics area for first IMSplex. This is

the offset from the beginning of CSLSSTX. The

offset points to the CSLSST1 area.

SSTX_SST1OFF X’18’ X’04’ Input Offset to the SCI request statistics record for

activity performed by SCI requests (mapped by

macro CSLSST1). The offset is from the start of

the statistics area for this IMSplex. Refer to

Table 58 on page 160 for a description of the

SCI Request statistics record.

Chapter 5. CSL Structured Call Interface 159

Table 57. SCI Statistics Header CSLSSTX (continued)

Field Name Offset Length Field Usage Description

SSTX_SST2OFF X’1C’ X’04’ Input Offset to SCI IMSplex statistics record for activity

performed by SCI for an IMSplex (mapped by

macro CSLSST2). The offset is from the start of

the statistics area for this IMSplex. Refer to

Table 59 on page 161 for a description of the

SCI IMSplex statistics record.

SSTX_SST3OFF X’20’ X’04’ Input Offset to first SCI member statistics record for

SCI activity performed by each member in an

IMSplex (mapped by the CSLSST3 macro). The

offset is from the start of the statistics area for

each IMSplex. Refer to Table 60 on page 161.

X’24’ X’04’ Input Reserved.

X’28’ X’04’ None Reserved.

X’2C’ X’04’ None Reserved.

SCI Statistics Record CSLSST1

CSLSST1 contains statistics that are related to requests that are processed by SCI.

Table 58 lists the SCI Statistics Record CSLSST1. Included are the field name, the

offset value and length, both in hexadecimal, how the field is used, and a brief

description of the field.

 Table 58. SCI Statistics Record CSLSST1

Field Name Offset Length Field Usage Description

SST1_ID X’00’ X’08’ Input Eyecatcher “CSLSST1”.

SST1_LEN X’08’ X’04’ Input Length of CSLSTT1 data.

SST1_PVER X’0C’ X’04’ Input Statistics Version Number (00000001).

SST1_SCREG X’10’ X’04’ Input Number of local registrations.

SST1_RREG X’14’ X’04’ Input Number of remote registrations.

SST1_NREG X’18’ X’04’ Input Number of notify remote registrations.

SST1_SCRDY X’1C’ X’04’ Input Number of local readys.

SST1_RRDY X’20’ X’04’ Input Number of remote readys.

SST1_NRDY X’24’ X’04’ Input Number of notify remote readys.

SST1_SCQSC X’28’ X’04’ Input Number of local quiesces.

SST1_RQSC X’2C’ X’04’ Input Number of remote quiesces.

SST1_SCDRG X’30’ X’04’ Input Number of normal local deregistrations.

SST1_SCDRGA X’34’ X’04’ Input Number of abnormal local deregistrations.

SST1_RDRG X’38’ X’04’ Input Number of normal remote deregistrations.

SST1_RDRA X’3C’ X’04’ Input Number of abnormal remote deregistrations.

SST1_NABN X’14’ X’04’ Input Number of notify abends.

SST1_SCMI X’40’ X’04’ Input Number of member initializations.

X’44’ X’04’ Input Reserved.

X’48’ X’04’ Input Reserved.

X’4C’ X’04’ Input Reserved.

X’50’ X’04’ Input Reserved.

160 Common Service Layer Guide and Reference

|
|
|
|

Table 58. SCI Statistics Record CSLSST1 (continued)

Field Name Offset Length Field Usage Description

X’54’ X’04’ Input Reserved.

X’58’ X’04’ Input Reserved.

X’5C’ X’04’ Input Reserved.

X’60’ X’04’ Input Reserved.

X’64’ X’04’ Input Reserved.

SCI Statistics Record CSLSST2

CSLSST2 contains statistics that are related to an IMSplex, but not to a specific

request. Table 59 lists the SCI Statistics Record CSLSST2. Included are the offset

value and length, both in hexadecimal, how the field is used, and a brief description

of the field.

 Table 59. SCI Statistics Record CSLSST2

Field Name Offset Length Field Usage Description

SST2_ID X’00’ X’08’ Input Eyecatcher “CSLSST2”.

SST2_LEN X’08’ X’04’ Input Length of CSLSST2 data.

SST2_PVER X’0C’ X’04’ Input Statistics Version Number (00000001).

SST2_PLEXNAME X’10’ X’08’ Input IMSplex name.

SST2_SST3CNT X’18’ X’04’ Input Number of CSLSST3 records to follow.

SST2_MSGOGOOD X’1C’ X’04’ Input Number of successful IXCMSGO calls.

SST2_MSGOBFSH X’20’ X’04’ Input Number of IXCMSGO calls with buffer shortage.

SST2_MSGORSSH X’24’ X’04’ Input Number of IXCMSGO calls with other resource

shortage.

X’28’ X’04’ Input Reserved.

X’2C’ X’04’ Input Reserved.

X’30’ X’04’ Input Reserved.

X’34’ X’04’ Input Reserved.

X’38’ X’04’ Input Reserved.

X’3C’ X’04’ Input Reserved.

X’40’ X’04’ Input Reserved.

X’44’ X’04’ Input Reserved.

SCI Member Statistics Record CSLSST3

CSLSST3 contains statistics that are related to specific members of an IMSplex.

There is one CSLSST3 entry for each registered IMSplex member when statistics

are taken. Table 60 lists the SCI Statistics Record CSLSST3. Included are the offset

value and length, both in hexadecimal, how the field is used, and a brief description

of the field.

 Table 60. SCI Member Statistics Record CSLSST3

Field Name Offset Length Field Usage Description

SST3_ID X’00’ X’08’ Input Eyecatcher “CSLSST3”.

SST3_LEN X’08’ X’04’ Input Length of CSLSST3 data.

SST3_PVER X’0C’ X’04’ Input Statistics Version Number (00000001).

Chapter 5. CSL Structured Call Interface 161

|
|
|
|

|

|

|

|

|
|
|
|
|

Table 60. SCI Member Statistics Record CSLSST3 (continued)

Field Name Offset Length Field Usage Description

SST3_PLEXNAME X’10’ X’08’ Input IMSplex name.

SST3_MBRNAME X’18’ X’04’ Input Member name.

SST3_MBRTYPE X’20’ X’04’ Input Member type.

SST3_RQSNTBYL X’24’ X’04’ Input Number of requests sent by this member to

members on this system (local).

SST3_RQSNTBYR X’28’ X’04’ Input Number of requests sent by this member to

members on remote systems.

SST3_RQSNTTO X’2C’ X’04’ Input Number of requests sent to this member by

members on this system (local).

SST3_RQRCVBY X’30’ X’04’ Input Number of requests received by this member

from all sources.

SST3_MGSNTBYL X’34’ X’04’ Input Number of messages sent by this member to

members on this system (local).

SST3_MGSNTBYR X’38’ X’04’ Input Number of messages sent by this member to

members on remote systems.

SST3_MBSNTBYM X’3C’ X’04’ Input Number of messages sent by this member to

multiple members.

SST3_MGSNTTO X’40’ X’04’ Input Number of messages sent to this member by

members on this system (local).

SST3_MGRCVBY X’44’ X’04’ Input Number of messages received by this member

from all sources.

SST3_RQSTMOUT X’48’ X’04’ Input Number of requests sent to this member that

timed out.

SST3_RQSLOST X’4C’ X’04’ Input Number of requests sent to this member that

were lost due to an abend or lose system.

X’50’ X’04’ Input Reserved.

X’54’ X’04’ Input Reserved.

X’58’ X’04’ Input Reserved.

X’5C’ X’04’ Input Reserved.

X’60’ X’04’ Input Reserved.

X’64’ X’04’ Input Reserved.

X’68’ X’04’ Input Reserved.

X’6C’ X’04’ Input Reserved.

CSL SCI IMSplex Member Exit Routines

This topic describes the exits that SCI can drive in the address space of a

registered IMSplex member. These exit routines allow an IMSplex member to:

v Monitor what address spaces are active members of the IMSplex.

v Receive messages and requests from other members of the same IMSplex.

SCI member exits are written and supplied by an IMSplex member (such as the

IMS control region). Each member must write its own exit routines tailored to the

needs of that member product, to be supplied as part of the product. No sample

SCI exit routines are provided. The exit routines are given control in the member’s

address space in one of two ways:

162 Common Service Layer Guide and Reference

v For authorized members (those running in supervisor state, key 0-7), the exits

receive control in SRB mode.

v For non-authorized members (those running in problem state or non-key 0-7), the

exits receive control as an IRB under the member TCB associated with the SCI

registration.

Because each call to a member exit routine runs under its own SRB, the order in

which the exits are driven is not guaranteed. It is possible for member exit routines

to be driven out of order (different from the order in which SCI scheduled them).

Your exit routines must be able to tolerate events that are received out of order. All

member exit routine parameter lists contain an 8-byte time stamp in STCK format,

which is the time when SCI scheduled the SRB for the exit routine. This time stamp

can be used to help determine the original order of events.

The SCI IMSplex member exit routines are:

v “CSL SCI Input Exit Routine”

v “CSL SCI Notify Client Exit Routine” on page 166

CSL SCI Input Exit Routine

The SCI Input exit routine is called whenever there is a message or a request for

the IMSplex member.

The IMSplex member loads the exit routine and passes the exit routine address on

the CSLSCREG request. The exit is driven in the member’s address space, either

as an SRB (for authorized members) or as an IRB (for non-authorized members).

Contents of Registers on Entry

Register Contents

0 Length in bytes of the parameter list pointed to by R1.

1 Address of SCI Input exit parameter list (mapped by macro

CSLSINXP).

13 Address of 2 prechained save areas. The first save area can be

used by the exit to save registers on entry. The second save area is

for use by routines called from the exit.

14 Return address.

15 Entry point of exit routine.

 Restriction: All addresses passed to the SCI Input Exit routine are valid only until

the exit routine returns to its caller (with the exception of the member parameter list

address). These addresses should never be stored and used after the SCI Input

Exit routine has returned. Doing so can cause unpredictable results, because the

storage pointed to by the addresses might have changed, or it might have been

freed. The member parameter list address is the exception to this restriction. It is

available until the storage is released by issuing the CSLSCBFR FUNC=RELEASE

request (for messages), or the CSLSCRQR FUNC=RETURN request (for requests).

Contents of Registers on Exit

The SCI Input exit routine must preserve the contents of R13; it does not need to

preserve any other register’s contents. Therefore, it can use the save areas pointed

to by R13 for any calls to other services as needed.

Register Contents

Chapter 5. CSL Structured Call Interface 163

13 The same value it had on entry to the SCI Input exit routine.

15 Return code

0 The message or request was successfully received.

8 The message or request was not received. If the input data

is for a request, SCI sends a response with return

code=SRC_PARM (parameter error) and reason

code=SRSN_FUNCTION (invalid function). For both

messages and requests, SCI releases the storage

containing the input data.

CSL SCI Input Exit Parameter List

Table 61 describes the entry parameters for the parameter list header of the Client

SCI Input exit routine. The field name is provided, with its offset and length in

hexadecimal, and a brief description of the field.

 Table 61. Client SCI Input Exit Routine parameter List - parameter List Header

Field Name Offset Length Description

INXP_PVER X'00' X'04' Parameter list version number (00000001).

INXP_PLEN X'04' X'04' Total length of parameter list.

INXP_SCIVSN X'08' X'04' Version of SCI on the system from which this message

or request originated.

INXP_EXITPARM X'0C' X'08' Input exit routine member data that was passed to SCI

on the CSLSCREG request with the INPUTPARM

parameter. If no data was passed on the CSLSCREG

request, this field contains zeros.

INXP_PLEXNAME X'14' X'08' IMSplex name.

INXP_TIMESTMP X'1C' X'08' Time stamp representing the time the exit routine was

scheduled (in STCK format).

INXP_DATAOFF X'24' X'04' Offset of Message Data Section from the start of the

parameter list header.

INXP_SRCOFF X'28' X'04' Offset of Source Member Data Section from the start of

the parameter list header

Table 62 describes the entry parameters for the message data of the Client SCI

Input exit routine. The field name is provided, with its offset and length in

hexadecimal, and a brief description of the field.

 Table 62. Client SCI Input Exit Routine parameter List - Message Data

Field Name Offset Length Description

INXP_FUNC X'00' X'04' Function code.

INXP_SFUNC X'04' X'04' Subfunction code.

164 Common Service Layer Guide and Reference

Table 62. Client SCI Input Exit Routine parameter List - Message Data (continued)

Field Name Offset Length Description

INXP_DATAFL1 X'08' X'01' Data Flag.

X'80' INXP_RQST

 This bit indicates that the input data is a

request. When the receiver of the request has

completed processing the request, it must be

returned using the CSLSCRQR request. If the

bit is not set, the input data is a message.

When the receiver of the message has

completed processing the message, it should

return the storage to SCI using the CSLSCBFR

request.

X'40' INXP_FTYPSND

 When this bit is on, the function code in

INXP_FUNC is defined by the sender. When

this bit is off, the function code is defined by the

destination.

X'09' X'03' Reserved.

INXP_MBRPLCNT X'0C' X'04' The number of parameters (pairs of lengths and

addresses) passed in the member parameter list.

INXP_MBRPLPTR X'10' X'04' The address of the member parameter list.

X'14' X'04' Reserved.

INXP_RQSTTKN X'18' X'08' Request token. This field is valid only if bit INXP_RQST

is set (indicating that this is a request). The request

token is used to return the request to the sender when

issuing the CSLSCRQR request. If INXP_RQST is not

set (indicating this is a message), this field is unused.

X'20' X'04' Reserved.

X'24' X'04' Reserved.

Table 63 describes the entry parameters for the input source data of the Client SCI

Input exit routine. The field name is provided, with its offset and length in

hexadecimal, and a brief description of the field.

 Table 63. Client SCI Input Exit Routine parameter List - Input Source Data

Field Name Offset Length Description

INXP_SCITKN X'00' X'10' The SCITOKEN of the IMSplex member that is the

source of this data.

INXP_MBRNAME X'10' X'08' The name of the IMSplex member that is the source of

this data.

INXP_MBRVSN X'18' X'04' The version of the IMSplex member that is the source of

this data. If the source IMSplex member did not pass a

MBRVSN on the CSLSCREG request, this field is set to

zeros.

INXP_TYPE X'1C' X'02' The IMSplex member type of the IMSplex member that

is the source of this data.

X'1E' X'02' Reserved.

Chapter 5. CSL Structured Call Interface 165

Table 63. Client SCI Input Exit Routine parameter List - Input Source Data (continued)

Field Name Offset Length Description

INXP_SUBTYPE X'20' X'08' The subtype of the IMSplex member that is the source

of this data. If the source IMSplex member did not pass

a SUBTYPE on the CSLSCREG request, this field is set

to zeros.

INXP_JOBNAME X'28' X'08' The jobname of the IMSplex member that is the source

of this data.

INXP_USERID X'30' X'08' The user ID of the IMSplex member that is the source of

this data.

INXP_SRCFL1 X'38' X'01' Source Flag

X'80' This bit indicates that the member that sent this

data is authorized.

X'39' X'03' Reserved.

X'3C' X'04' Reserved.

X'40' X'04' Reserved.

X'44' X'04' Reserved.

CSL SCI Notify Client Exit Routine

The SCI Notify exit routine is driven whenever there is a change in the SCI status

of an IMSplex member. This allows a member to keep track of the status of other

members in the IMSplex.

The IMSplex member loads the exit routine and passes the exit routine address on

the CSLSCREG request. The exit is driven in the member’s address space, either

as an SRB (for authorized members) or as an IRB (for non-authorized members).

The exit is driven whenever an IMSplex member:

v Completes a successful CSLSCREG FUNC=REGISTER

v Completes a successful CSLSCRDY FUNC=READY

v Completes a successful CSLSCQSC FUNC=QUIESCE

v Completes a successful CSLSCDRG FUNC=DEREGISTER

v Terminates without issuing a CSLSCDRG FUNC=DEREGISTER request.

v Is not reachable because the local SCI is not active.

Note that some fields are not available in the Notify exit parameter list when the exit

is driven for CSLSCDRG-related events (normal and abnormal termination) and

when an IMSplex member is not reachable.

If the local SCI is the IMSplex member for which the Notify exit is being driven, the

NXFP_LOCALSCI (X'40') bit in the NXFP_FLAG1 is set. When an SCI terminates,

processing on the z/OS image for the IMSplex that was managed by the inactive

SCI is limited until the SCI restarts:

v No messages or requests can be sent or received by any local IMSplex member.

v The SCI Notify exit cannot be driven for local IMSplex members for the following

events:

– CSLSCREG FUNC=REGISTER

– CSLSCRDY FUNC=READY

– CSLSCQSC FUNC=QUIESCE

166 Common Service Layer Guide and Reference

– CSLSCDRG FUNC=DEREGISTER (non-authorized member)

– Termination without CSLSCDRG FUNC=DEREGISTER (non-authorized

member)

The Notify exit continues to be driven for normal and abnormal deregistrations for

authorized members.

v No new members can join the IMSplex on the z/OS image.

v No SCI requests can be processed by local IMSplex members (for example,

CSLSCQRY and CSLSCDRG requests).

When SCI restarts on the z/OS image, SCI re-registers each IMSplex member that

is still active. The SCITOKEN for each IMSplex member is still valid. The Notify exit

routine for each local member is driven for the following events:

v Registration for the local SCI

v Registration and Ready (if appropriate) for the local IMSplex members

v Ready for the local SCI

v Registration and Ready (if appropriate) for IMSplex members that are not local

Events for members that are not local can be scheduled before the Ready for the

local SCI; however, events for local members are all scheduled before the SCI

Ready event is scheduled. Local IMSplex members should not use SCI services

until they have received the Ready event for the local SCI.

Contents of Registers on Entry

Register Contents

0 Length in bytes of the parameter list pointed to by R1.

1 Address of SCI Notify exit parameter list (mapped by macro

CSLSNFXP).

13 Address of 2 prechained save areas. The first save area can be

used by the exit to save registers on entry. The second save area is

for use by routines called from the exit.

14 Return address.

15 Entry point of exit routine.

 Restriction: All addresses passed to the SCI Notify exit routine are valid only until

the exit routine returns to its caller. These addresses should never be stored and

used after the SCI Notify exit routine has returned. Doing so can cause

unpredictable results, because the storage pointed to by the addresses might have

changed, or it might have been freed.

Contents of Registers on Exit

The SCI Notify exit routine must preserve the contents of R13; it does not need to

preserve any other register’s contents. Therefore, it is free to use the save areas

pointed to by R13 for any calls to other services as needed.

Register Contents

13 The same value it had on entry to the SCI Notify exit routine.

15 Return code

0 Always set this to zero.

Chapter 5. CSL Structured Call Interface 167

|

|
|

|
|

CSL SCI Notify Exit Parameter List

Table 64 describes the parameter list header of the SCI Notify Client exit routine.

The field name is provided, with its offset and length in hexadecimal, and a brief

description of the field.

 Table 64. SCI Notify Client Exit Routine parameter List Header

Field Name Offset Length Description

NFXP_PVER X'00' X'04' Parameter list version number (00000001).

NFXP_PLEN X'04' X'04' Total length of parameter list.

NFXP_EXITPARM X'08' X'08' Notify exit routine member data that was passed to SCI

on the CSLSCREG request with the NOTIFYPARM

parameter. If no data was passed on the CSLSCREG

request, this field contains zeros.

NFXP_PLEXNAME X'10' X'08' IMSplex name.

NFXP_SCIVSN X'18' X'04' SCI Version

NFXP_TIMESTMP X'1C' X'08' Time stamp representing the time the exit routine was

scheduled (in STCK format).

NFXP_SUBJOFF X'24' X'04' Offset of Subject Data Section.

X'28' X'04' Reserved.

Table 65 describes the subject data of the SCI Notify Client exit routine. The field

name is provided, with its offset and length in hexadecimal, and a brief description

of the field.

 Table 65. SCI Notify Client Exit Routine Parameter List - Subject Data

Field Name Offset Length Description

NFXP_SCITKN X'00' X'10' The SCITOKEN of the member that is the subject of this

event.

NFXP_EVENT X'10' X'02' The event that initiated this notification.

1 CSLSCREG FUNC=REGISTER

2 CSLSCRDY FUNC=READY

3 CSLSCQSC FUNC=QUIESCE

4 CSLSCDRG FUNC=DEREGISTER

5 Termination without CSLSCDRG

FUNC=DEREGISTER

6 The member cannot be reached because the

local SCI is not active.

NFXP_FLAG1 X'12' X'01' The event that initiated this notification.

X'80' This bit indicates that the subject of this event

is authorized.

X'40' This bit indicates that the subject of this event

is the local SCI.

X'13' X'01' Reserved.

NFXP_MBRNAME X'20' X'08' The Name of the IMSplex member that is the subject of

this event.

168 Common Service Layer Guide and Reference

Table 65. SCI Notify Client Exit Routine Parameter List - Subject Data (continued)

Field Name Offset Length Description

NFXP_MBRVSN X'28' X'04' The Version of the IMSplex member that is the subject

of this event. If the subject IMSplex member did not

pass a MBRVSN on the CSLSCREG request, this field

is set to zeros.

This data is not filled in for:

v NFXP_EVENT= 4 (normal termination)

v NXFP_EVENT= 5 (abnormal termination)

v NXFP_EVENT=6 (not reachable)

NFXP_TYPE X'14' X'02' The IMSplex member Type of the IMSplex member that

is the subject of this event.

X'16' X'02' Reserved.

NFXP_SUBTYPE X'18' X'08' The Subtype of the IMSplex member that is the subject

of this event. If the subject IMSplex member did not

pass a SUBTYPE on the CSLSCREG request, this field

is set to zeros.

This data is not filled in for:

v NFXP_EVENT= 4 (normal termination)

v NXFP_EVENT= 5 (abnormal termination)

v NXFP_EVENT=6 (not reachable)

NFXP_JOBNAME X'18' X'08' The Jobname of the IMSplex member that is the subject

of this event.

This data is not filled in for:

v NFXP_EVENT= 4 (normal termination)

v NXFP_EVENT= 5 (abnormal termination)

v NXFP_EVENT=6 (not reachable)

Writing a CSL SCI Client

If you want to write a program that participates in an IMSplex (such as an

automated operator program), you must first establish a connection to SCI. This

allows your IMSplex member to communicate with other IMSplex members. Without

a connection to SCI, a program cannot participate in an IMSplex and communicate

with other IMSplex members.

SCI considers IMSplex members to be either authorized or non-authorized. SCI

handles authorized members differently than it handles non-authorized IMSplex

members. These differences are described in “How SCI views authorized and

non-authorized IMSplex members” on page 170.

To establish a connection with SCI, you can use a subset of the SCI requests

described in “CSL SCI Requests” on page 171. These requests establish or

terminate a connection with SCI and optionally indicate to SCI that the IMSplex

member is in a ready state. When a member is in a ready state, it can have

requests and messages routed to it by type.

SCI requests are also used by an IMSplex member to communicate with other

IMSplex members and to find out information about those members. IMSplex

members communicate with other members by using SCI requests to send

Chapter 5. CSL Structured Call Interface 169

|
|
|
|

messages, requests, and responses to requests. A query request, “CSLSCQRY:

Query Request” on page 182 can be used to find out information about the other

members of the IMSplex.

How SCI views authorized and non-authorized IMSplex members

SCI considers IMSplex members to be either authorized or non-authorized. If an

IMSplex member is in supervisor state when it registers with SCI, and it is either in

a system key (0-7) or was loaded from an authorized library, SCI considers the

IMSplex member to be authorized. SCI considers all other members to be

non-authorized. SCI handles authorized IMSplex members differently than it

handles non-authorized members. These differences include:

v Authorized members can use the ABNDSTAT parameter on the CSLSCREG:

Registration Request. This parameter tells SCI to retain information about the

member if the member terminates without de-registering.

v Notify and input exit routines for authorized members receive control in Service

Request Block (SRB) mode. Exit routines for non-authorized members receive

control as an Interrupt Request Block (IRB) under the TCB associated with the

SCI registration.

v The Authorized Member flag is set in:

– The CSLSCQRY: Query Request output

– CSL SCI Notify Exit Parameter List

– CSL SCI Input Exit Parameter List

v If an authorized IMSplex member terminates on a z/OS image without an active

SCI, all other authorized members are notified. Non-authorized members are

notified if they are on a z/OS system with an active SCI. If a non-authorized

member terminates on a z/OS image without an active SCI, the other members

in the IMSplex are notified when SCI is restarted on the z/OS image.

v Authorized IMSplex member names must be unique within the IMSplex.

Non-authorized IMSplex member names do not have to be unique.

When an IMSplex member uses a service that requires the SCI interface, the

member must be in the same state and key as it was when it issued the SCI

register request. If the key or state is different, unpredictable results can occur. For

example, if an IMSplex member issues the SCI register request in supervisor state,

it cannot issue an OM service while in problem state.

Sequence of CSL SCI Requests

Like the OM and RM requests, the SCI requests must be issued in a particular

sequence.

The first request is CSLSCREG. The member can then issue CSLSCRDY to tell

SCI that it is ready to receive messages and requests that are routed by member

type. If a member has storage that is allocated by SCI (for example, a message or

an SCI allocated output parameter is received), the SCI buffer release request,

CSLSCBFR, can be issued to release the storage.

When a member is ready to terminate, the SCI quiesce request, CSLSCQSC, is

used to tell SCI that the member does not want to receive messages and requests

that are routed by member type. After the SCI deregistration request, CSLSCDRG,

is used to terminate the connection with SCI, the member can no longer participate

in the IMSplex.

170 Common Service Layer Guide and Reference

|

|
|
|
|
|
|

|
|
|

|
|
|
|

|

|

|

|

|
|
|
|
|

|
|

|
|
|
|
|

Table 66 lists the sequence of requests issued by an SCI client. The request is

listed with its purpose.

 Table 66. Sequence of requests for SCI client

Request Purpose

CSLSCREG Register to SCI, which establishes the connection with SCI and enables

the member to communicate within the IMSplex.

CSLSCRDY Readies the member to SCI, which allows SCI to route messages and

requests that are routed by member type to this member.

CSLSCBFR Releases storage allocated for the member by SCI (for example,

message data or parameters allocated by SCI from a request).

CSLSCQSC Quiesces the member to SCI, which tells SCI not to route messages

and requests that are routed by member type to this member.

CSLSCDRG Deregisters the member from SCI which ends the member’s connection

with SCI.

Advanced CSL SCI Requests

After establishing the connection with SCI, an IMSplex member can use advanced

SCI requests to:

v Communicate, or request services, from other IMSplex members.

A message protocol and a request protocol are provided to facilitate

communication among IMSplex members. A message is a one-way

communication with another IMSplex member. A request requires that a response

be returned to the requesting member.

v Find out information about the other members in the IMSplex.

A query request, CSLSCQRY, allows an IMSplex member to find out who the

other members of the IMSplex are and to obtain information about those IMSplex

members.

Table 67 lists the advanced SCI requests with their purpose. These requests can be

issued without regard to sequence; however, the IMSplex member issuing the

request must have registered to SCI.

 Table 67. Advanced SCI requests for IMSplex members

Request Purpose

CSLSCMSG Sends a one-way message to another IMSplex member.

CSLSCRQS Sends a request to another IMSplex member. SCI expects a response

to the request.

CSLSCRQR Sends a response to a previously issued request.

CSLSCQRY Issues a query to SCI to find out information about members of the

IMSplex.

CSL SCI Requests

Most SCI requests can be issued by any IMSplex member; any member can also

receive messages from any other IMSplex member.

The SCI requests include:

v “CSLSCBFR: Buffer Return Request” on page 172

v “CSLSCDRG: Deregistration Request” on page 174

Chapter 5. CSL Structured Call Interface 171

v “CSLSCMSG: Send Message Request” on page 175

v “CSLSCQRY: Query Request” on page 182

v “CSLSCQSC: Quiesce Request” on page 185

v “CSLSCRDY: Ready Request” on page 187

v “CSLSCREG: Registration Request” on page 188

v “CSLSCRQR Request Return Request” on page 194

v “CSLSCRQS: Send Request Request” on page 197

CSLSCBFR: Buffer Return Request

The CSLSCBFR request releases storage that SCI allocated for an IMSplex

member. This storage is allocated to receive either an input message that was sent

from another IMSplex member with the CSLSCMSG request, or an output

parameter generated from a CSLSCRQS request.

Note: Another macro can invoke CSLSCRQS as part of the code generated by the

macro which, in turn, can return an SCI data type. The storage allocated for

these parameters must be released with the CSLSCBFR macro. An example

of an SCI macro that does this is the CSLSCQRY macro. The OUTPUT

parameter specifies the address in storage to receive the address of the

buffer that contains the output from the CSLSCQRY. This storage should be

released using CSLSCBFR.

CSLSCBFR Syntax

The syntax for the CSLSCBFR request follows.

DSECT Syntax: Use the DSECT function of a CSLSCBFR request to include

equate (EQU) statements in your program for the CSLSCBFR parameter list length

and the CSLSCBFR return and reason codes.

�� CSLSCBFR FUNC=DSECT ��

RELEASE Syntax: Use the Release function of CSLSCBFR to release an SCI

message buffer or SCI data type buffer. The SCI data type buffer is used for

selected output parameters of CSLSCRQS for which SCI allocates storage.

For messages generated from a CSLSCMSG request, the buffer address is the

address of the member parameter list that is given to the member input exit in the

INXP_MBRPLPTR field in the input exit parm list.

For a response generated from a CSLSCRQS request that uses an SCI data type

buffer, the storage is allocated when the request is returned to the IMSplex member

that initiated the original request. The buffer address is the address of this storage,

which is returned in the field specified by the member on the request.

After the CSLSCBFR request is complete, the storage contained in the message

buffer or request response is no longer accessible by the IMSplex member. The

CSLSCBFR FUNC=RELEASE request follows.

�� CSLSCBFR FUNC=RELEASE PARM=parm SCITOKEN=scitoken

BUFFER=buffer
 �

172 Common Service Layer Guide and Reference

�
BUFFERPTR=buffer

 RETCODE=returncode RSNCODE=reasoncode ��

CSLSCBFR Parameters

The parameters for the CSLSCBFR request follow.

BUFFER=symbol

BUFFER=(r1-r12)

(Required) - Four-byte parameter that contains the address of a buffer that is to

be released.

 Either BUFFER or BUFFERPTR is required.

BUFFERPTR=symbol

BUFFERPTR=(r1-r12)

(Optional) — Four-byte parameter that contains the address of a word in

storage that contains the address of the buffer that is to be released.

 Either BUFFER or BUFFERPTR is required.

PARM=symbol

PARM=(r1-r12)

(Required) - Specifies the CSLSCBFR parameter list. The length of the

parameter list must be equal to the parameter list length EQU value defined by

SBFR_PARMLN.

RETCODE=symbol

RETCODE=(r1-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. The

SCI return codes are defined in CSLSRR. Possible return codes for CSLSCBFR

are described in Table 68.

RSNCODE=symbol

RSNCODE=(r1-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. The

SCI reason codes are defined in CSLSRR. Possible reason codes for

CSLSCBFR are described in Table 68.

SCITOKEN=symbol

SCITOKEN=(r1-r12)

(Required) - Specifies a 16-byte field containing the SCITOKEN. This token

uniquely identifies this IMSplex member’s connection to SCI. The SCI token

was returned by a successful CSLSCREG FUNC=REGISTER request.

CSLSCBFR Return and Reason Codes

Table 68 lists the return and reason codes that can be returned on a CSLSCBFR

macro request. Also included is the meaning of a reason code (that is, what

possibly caused it).

 Table 68. CSLSCBFR Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' Request completed successfully.

X'01000008' X'00002014' The buffer being released was not an SCI buffer.

X'00002018' Invalid SCI token.

X'00002038' Parameter list version is invalid.

X'00002054' The buffer being released was not an allocated buffer.

X'01000010' X'00004FFF' Function is not supported.

Chapter 5. CSL Structured Call Interface 173

|

|
|
|
|

|

Table 68. CSLSCBFR Return and Reason Codes (continued)

Return Code Reason Code Meaning

X'01000014' X'00005000' An SCI internal error occurred.

X'00005074' Buffer prefix is damaged on CSLSCBFR call.

X'00005078' STORAGE RELEASE failed for SCI buffer on

CSLSCBFR call

X'00005500' An abend occurred during CSLSCBFR processing.

CSLSCDRG: Deregistration Request

Use the SCI deregistration request to terminate the connection between the

IMSplex member and SCI. After successful completion of this request, the SCI

token is no longer valid. To make subsequent SCI requests, the IMSplex member

must create a new connection with SCI with a CSLSCREG request.

CSLSCDRG Syntax

The syntax for the CSLSCDRG request follows.

CSLSCDRG DSECT Syntax: Use the DSECT function of a CSLSCDRG request

to include equate (EQU) statements in your program for the CSLSCDRG parameter

list length and the CSLSCDRG return and reason codes.

�� CSLSCDRG FUNC=DSECT ��

CSLSCDRG DEREGISTER Syntax: The CSLSCDRG FUNC=DEREGISTER

request deregisters the IMSplex member from SCI. After successful completion of

the CSLSCDRG FUNC=DEREGISTER request, the SCITOKEN is invalid.

�� CSLSCDRG FUNC=DEREGISTER PARM=parm SCITOKEN=scitoken �

� RETCODE=returncode RSNCODE=reasoncode ��

CSLSCDRG Parameters

The parameters for the CSLSCDRG request follow.

PARM=symbol

PARM=(r1-r12)

(Required) - Specifies the CSLSCDRG parameter list. The length of the

parameter list must be equal to the parameter list length EQU value defined by

SDRG_LN.

RETCODE=symbol

RETCODE=(r1-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCDRG

return code. The SCI return codes are defined in CSLSRR. Possible return

codes for CSLSCDRG are described in Table 69 on page 175.

RSNCODE=symbol

RSNCODE=(r1-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCDRG

reason code. The SCI reason codes are defined in CSLSRR. Possible reason

codes for CSLSCDRG are described in Table 69 on page 175.

SCITOKEN=symbol

174 Common Service Layer Guide and Reference

SCITOKEN=(r1-r12)

(Required) - Specifies a 16-byte field containing the SCITOKEN. This token

uniquely identifies this IMSplex member’s connection to SCI. The SCI token

was returned by a successful CSLSCREG FUNC=REGISTER request.

CSLSCDRG Return and Reason Codes

Table 69 lists the return and reason codes that can be returned on a CSLSCDRG

macro request. Also included is the meaning of a reason code (that is, what

possibly caused it).

 Table 69. CSLSCDRG Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' The request completed successfully.

X'01000004' X'00001010' XCF leave for member failed.

X'01000008' X'00002018' Invalid SCI token.

X'00002038' Parameter list version is invalid.

X'01000010' X'00004000' SCI is not active.

X'00004014' CSLSDR00 could not be loaded.

X'00004018' There are still outstanding requests during

deregistration.

X'00004FFF' Function is not supported.

X'01000014' X'00005000' An SCI internal error occurred.

X'00005004' SCI was unable to add the ESTAE routine.

X'00005008' A BPE SVC error occurred.

X'00005020' An ENQ resource error occurred.

X'00005500' An abend occurred during CSLSCDRG processing.

CSLSCMSG: Send Message Request

Use the SCI send message request to send a message to one or more other

IMSplex members. The target members are specified by SCITOKEN, member

name, or member type.

CSLSCMSG Syntax

The syntax for the CSLSCMSG request follows.

CSLSCMSG DSECT Syntax: Use the DSECT function of a CSLSCMSG request

to include equate (EQU) statements in your program for the CSLSCMSG parameter

list length, the IMSplex types and the CSLSCMSG return and reason codes.

�� CSLSCMSG FUNC=DSECT ��

CSLSCMSG SEND MESSAGE Syntax: The syntax of the CSLSCMSG FUNC=SEND

request is shown below:

Chapter 5. CSL Structured Call Interface 175

CSLSCMSG Parameters

The parameters for the CSLSCMSG request follow.

FUNCTYPE=SENDER

FUNCTYPE=DEST

(Optional) - Specifies that the MBRFUNC and MBRSFUNC are defined by the

DEST (destination) of this message or the SENDER of the message. This

indicator is passed to the recipient of the message in the SCI Input exit

parameter list.

LISTLEN=<numeric literal>

LISTLEN=symbol

LISTLEN=(r1-r12)

(Required if NAMELIST, TOKENLIST or TYPELIST is specified) - Specifies the

length of the routing list. The routing list consists of a header and one or more

�� CSLSCMSG FUNC=SEND SCITOKEN=scitoken PARM=parm MBRPARM=mbrparmlist �

� MBRPCNT=mbrparmcount MBRFUNC=mbrfunctioncode �

�
MBRSFUNC=mbrsubfunctioncode

FUNCTYPE=DEST

FUNCTYPE=SENDER

 �

� LISTLEN=listlength TOKENLIST=tokenlist

NAMELIST=namelist

TYPELIST=typelist

B

TOKEN=scitoken

NAME=membername

A

 RETCODE=returncode �

� RSNCODE=reasoncode

RETNAME=returnname

RETTOKEN=returntoken
 ��

A:

 TYPE=membertypecode

TYPE=’AOP’

TYPE=’BATCH’

TYPE=’CQS’

TYPE=’DBRC’

TYPE=’IMS’

TYPE=’IMSCON’

TYPE=’OM’

TYPE=’OTHER’

TYPE=’RM’

TYPE=’SCI’

 B

B:

 ROUTE=ANY

ROUTE=ALL

ROUTE=LOCAL

176 Common Service Layer Guide and Reference

list entries, each entry describing a single message destination (NAMELIST and

TOKENLIST) or set of destinations (TYPELIST).

 If LISTLEN is a numeric literal, all characters must be numbers. If any character

is alphabetic, the parameter will be considered a symbol.

MBRFUNC=symbol

MBRFUNC=(r1-r12)

(Required) - Specifies a 4-byte member function code that is passed to the

destination of the message in the SCI Input exit parameter list. This function

code, along with the MBRSFUNC, identifies the message that is being sent.

 If MBRFUNC is a symbol, the symbol points to a 4-byte area of storage that

contains the function code.

MBRPARM=symbol

MBRPARM=(r1-r12)

(Required) - Specifies the address of a pre-built parameter list. This parameter

list must be built by the messaging module and consists of sets of pairs. Each

pair describes a single parameter in the member parameter list and consists of

the following:

parameter length

Four-byte parameter that specifies the length of the member parameter.

parameter address

Four-byte parameter that specifies the address of the member

parameter.

The two methods for passing parameters in a parameter list are by address and

by value. Both of these methods can be used when passing parameters in a

CSLSCMSG request. The pair must be setup so that SCI will handle the

parameter properly.

v By address

To pass a parameter by address, the address of the parameter must be

passed in parameteraddress and the length of the parameter must be passed

in parameterlength. SCI will obtain the parameter from parameteraddress.

v By value

To pass a parameter by value, the parameter must be passed in

parameteraddress and zero must be passed in parameterlength. When the

length is zero, SCI will copy the value contained in parameteraddress to the

destination.

 Member Parameter List: The user parameters specified here are presented to

the IMSplex member that receives the message in the member parameter list,

the address of which is contained in the Input exit parameter area field

INXP_MBRPLPTR. Each parameter is represented by eight bytes, the first four

bytes contain parameterlength and the second four bytes contain

parameteraddress (if parameteraddress is an address, the second four bytes

point to storage in the local address space, not the requesting address space).

 Null Parameters: In some cases the message processing module expects a

set number of parameters with a defined order. If a message is to be sent that

does not contain all the parameters, null parameters must be sent to ensure the

data buffer contains everything that is expected. Null parameters can be sent by

specifying zero for parameterlength and parameteraddress. The eight bytes that

represent the parameter in the data buffer will contain zeros.

MBRPCNT=symbol

Chapter 5. CSL Structured Call Interface 177

MBRPCNT=(r1-r12)

(Required) - Specifies a 4-byte field that contains the number of member

parameters that are included in MBRPARM.

MBRSFUNC=symbol

MBRSFUNC=(r1-r12)

(Optional) - Specifies a 4-byte member subfunction code that is passed to the

destination of the message in the SCI Input exit parameter list. This subfunction

code, along with the MBRFUNC, identifies the message that is being sent.

 If MBRSFUNC is a symbol, the symbol points to a 4-byte area of storage that

contains the subfunction code.

NAME=symbol

NAME=(r1-r12)

(Optional) - Specifies the address of an 8-byte member name of the destination

of this message. This name can be obtained from the Notify exit (when the

member joins the IMSplex) or by issuing a CSLSCQRY message.

Note: One of the routing parameters (NAME, TOKEN, TYPE, NAMELIST,

TOKENLIST or TYPELIST) must be included.

To route by NAME, the destination member must be authorized. If the member

is not authorized, the message is not sent.

NAMELIST=symbol

NAMELIST=(r1-r12)

(Optional) - Specifies the address of a list of member names to which this

message is to be routed. This list consists of a header and one or more list

entries, each entry defining a single member name.

Note: One of the routing parameters (NAME, TOKEN, TYPE, NAMELIST,

TOKENLIST or TYPELIST) must be included.

The list header DSECT is CSLSMGLH, and the list entry DSECT is

CSLSNMLE. These DSECTs are defined in CSLSCMAP.

 For a message to be routed to a member using NAMELIST, that member must

be an authorized member. If a member name for a non-authorized member is

included in NAMELIST, the name will not be found and the message will not be

sent to that member.

 The NAMELIST is sent to SCI for processing. Then, control is returned to your

program. A response of “Request completed successfully” does not mean that

the message was sent to all names in the list; it means that the list was

successfully sent to SCI. Errors could occur while the list is processed and the

message is sent. Possible errors include:

v Name not found

v Name found, but the member terminated before message is sent

v SCI abended

These errors are not returned to your program.

PARM=symbol

PARM=(r1-r12)

(Required) - Specifies the address of a parameter list used by the message to

pass the parameters to SCI. The length of the storage must be at least equal to

the value of SMSG_LN. The storage must begin on a word boundary.

RETCODE=symbol

178 Common Service Layer Guide and Reference

|

RETCODE=(r1-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCMSG

return code. The SCI return codes are defined in CSLSRR. Possible return

codes for CSLSCMSG are described in “CSLSCMSG Return and Reason

Codes” on page 181.

RETNAME=symbol

RETNAME=(r1-r12)

(Optional) - Specifies the address of an 8-byte field to receive the name of the

IMSplex member to which the message was sent. If the message is sent to

more than one destination, nothing is returned in this field.

RETTOKEN=symbol

RETTOKEN=(r1-r12)

(Optional) - Specifies the address of an 8-byte field to receive the token of the

IMSplex member to which the message was sent. If the message is sent to

more than one destination, nothing is returned in this field.

ROUTE=ANY

ROUTE=ALL

ROUTE=LOCAL

(Optional) - Specifies how the message should be routed to the type specified

in the TYPE parameter or the types specified in the TYPELIST parameter. This

parameter is valid only if TYPE or TYPELIST is specified.

ANY

Routes the message to a single member of the types specified. SCI selects

the member that will receive the message. TYPE=ANY is not valid with

TYPELIST.

ALL

Routes the message to all members of the specified types.

LOCAL

Routes the message to all members of the specified types that are active

on the local z/OS image.

RSNCODE=symbol

RSNCODE=(r1-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCMSG

reason code. The SCI reason codes are defined in CSLSRR. Reason codes for

CSLSCMSG are described in “CSLSCMSG Return and Reason Codes” on

page 181.

SCITOKEN=symbol

SCITOKEN=(r1-r12)

(Required) - Specifies the address of a 16-byte field that contains the SCI token

of the member making the request. The token was returned on the CSLSCREG

request.

TOKEN=symbol

TOKEN=(r1-r12)

(Optional) - Specifies the address of the 16-byte SCI token of the destination of

this message. This token can be obtained from the Notify exit (when the

member joins the IMSplex) or by issuing a CSLSCQRY message.

Note: One of the routing parameters (NAME, TOKEN, TYPE, NAMELIST,

TOKENLIST or TYPELIST) must be included.

TOKENLIST=symbol

Chapter 5. CSL Structured Call Interface 179

TOKENLIST=(r1-r12)

(Optional) - Specifies the address of a list of SCI tokens that represent

members to which this message is to be routed. This list consists of a header

and one or more list entries, each entry defining a single SCI token.

Note: One of the routing parameters (NAME, TOKEN, TYPE, NAMELIST,

TOKENLIST or TYPELIST) must be included.

The list header DSECT is CSLSMGLH, and the list entry DSECT is CSLSTKLE.

These DSECTs are defined in CSLSCMAP.

 The TOKENLIST is sent to SCI for processing. Then, control is returned to your

program. A response of “Request completed successfully” does not mean that

the message was sent to all SCI tokens in the list; it means that the list was

successfully sent to SCI. Errors could occur while the list is processed and the

message is sent. Possible errors include:

v Token not found

v Token found but member terminated before message is sent

v SCI abended

These errors are not returned to your program.

TYPE=symbol

TYPE=’AOP’

TYPE=’BATCH’

TYPE=’CQS’

TYPE=’DBRC’

TYPE=’IMS’

TYPE=’IMSCON’

TYPE=’OM’

TYPE=’OTHER’

TYPE=’RM’

TYPE=’SCI’

(Optional) - TYPE specifies the SCI type of the destination of this message. SCI

routes the message to one or more members of the specified type (depending

on the value of the route parameters). If there are no members of the specified

type, an error is returned.

Note: One of the routing parameters (NAME, TOKEN, TYPE, NAMELIST,

TOKENLIST or TYPELIST) must be included.

If this parameter is passed as a literal, the literal must be enclosed in single

quotes. If this parameter is passed as a symbol or register, the symbol or

register must contain the member type code. The member type code can be

obtained by using the CSLSTPIX macro.

 For a description of the IMSplex member types, see “CSLSCREG: Registration

Request” on page 188.

TYPELIST=symbol

TYPELIST=(r1-r12)

(Optional) - Specifies the address of a list of member types to which this

message is to be routed. This list consists of a header and one or more list

entries, each entry defining a single SCI token.

Note: One of the routing parameters (NAME, TOKEN, TYPE, NAMELIST,

TOKENLIST or TYPELIST) must be included.

180 Common Service Layer Guide and Reference

The list header DSECT is CSLSMGLH, and the list entry DSECT is CSLSTPLE.

These DSECTs are defined in CSLSCMAP.

 The TYPELIST is sent to SCI for processing. Then, control is returned to your

program. A response of “Request completed successfully” does not mean that

the message was sent to all types in the list; it means that the list was

successfully sent to SCI. Errors could occur while the list is processed and the

message is sent. Possible errors include:

v No members of the specified type are active

v A member of the specified type was found but terminated before the

message is sent

v SCI abended

These errors are not returned to your program.

CSLSCMSG Return and Reason Codes

Table 70 lists the return and reason codes that can be returned on a CSLSCMSG

macro request. Also included is the meaning of a reason code (that is, what

possibly caused it).

 Table 70. CSLSCMSG Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' The request completed successfully.

X'01000008' X'00002004' An invalid function was passed to the SCI interface PC

routine.

X'00002008' The number of parameters passed was either less than

or equal to zero, or greater than the maximum allowed.

X'00002010' An invalid type was passed.

X'00002018' The SCI token was invalid.

X'00002024' The PHDR length was invalid.

X'00002028' The routing data length was invalid.

X'00002034' The length of the parameters is too large for a

non-authorized caller.

X'00002038' The parameter list version is invalid.

X'01000010' X'00004000' SCI is not active.

X'0000400C' The destination IMSplex member is not active. The

requested member might have been specified by name,

token, or type.

X'0000401C' The calling member is in the process of deregistering

from SCI.

X'00004FFF' The function is not supported.

Chapter 5. CSL Structured Call Interface 181

Table 70. CSLSCMSG Return and Reason Codes (continued)

Return Code Reason Code Meaning

X'01000014' X'00005000' An SCI internal error occurred.

X'00005004' An ESTAE add error occurred.

X'00005024' An error in the SRB routine occurred.

X'00005028' The routing type was invalid.

X'0000502C' The member could not be found due to an internal BPE

hash table services error.

X'00005030' An SCI buffer could not be obtained.

X'00005034' A key 7 buffer in the SCI address space could not be

obtained for a copy of PHDR and parameters.

X'00005038' An IEAMSCHD error occurred; the SRB could not be

scheduled to the target address space.

X'0000504C' The message SRB key 7 parameter area could not be

obtained.

X'00005500' An abend occurred during CSLSCMSG processing.

X'00005504' An abend occurred when the member parameters were

copied to the target address space.

CSLSCQRY: Query Request

The SCI Query request allows an IMSplex member to obtain information about the

members of the IMSplex.

CSLSCQRY Syntax

The syntax for the CSLSCQRY request follows.

CSLSCQRY DSECT Syntax: Use the DSECT function of a CSLSCQRY request to

include equate (EQU) statements in your program for the CSLSCQRY parameter

list length, the IMSplex types and the CSLSCQRY return and reason codes.

�� CSLSCQRY FUNC=DSECT ��

CSLSCQRY QUERY Syntax: Use the following syntax to issue the CSLSCQRY

service request. The output is returned to the caller when the request is complete.

182 Common Service Layer Guide and Reference

CSLSCQRY Parameters

The parameters for the CSLSCQRY request follow.

ECB=symbol

ECB=(r1-r12)

(Optional) - Specifies the address of a z/OS ECB used for asynchronous

requests. When the request is complete, the ECB specified is posted. If an ECB

is not specified, the task is suspended until the request is complete. If an ECB

is specified, the invoker of the macro must issue a WAIT (or equivalent) after

receiving control from CSLSCQRY, before using or examining any data returned

by this macro (including the RETCODE and RSNCODE fields).

OUTLEN=symbol

OUTLEN=(r1-r12)

(Required) - Specifies a 4-byte field to receive the length of the output returned

by the CSLSCQRY request. OUTLEN receives the length of the output pointed

to by the OUTPUT= parameter.

 The output length is zero if no output is built, for example, if an error is detected

before any output can be built.

OUTPUT=symbol

OUTPUT=(r1-r12)

(Required) - Specifies a field to receive a pointer to the variable length output

returned by the CSLSCQRY request. The output length is returned in the

OUTLEN= field.

 The output address is zero if no output was built, for example, if an error was

detected before any output could be built.

 The CSLSQRYO macro maps the output that is returned. The output contains a

header and one or more list entries.

�� CSLSCQRY FUNC=QUERY SCITOKEN=scitoken PARM=parm OUTPUT=output �

�

OUTLEN=outputlength

ECB=ecb

 SCOPE=IMSPLEX

SCOPE=LOCAL

SCOPE=TYPE

A

RETCODE=returncode

�

� RSNCODE=reasoncode ��

A:

 TYPE=membertypecode

TYPE=’AOP’

TYPE=’BATCH’

TYPE=’CQS’

TYPE=’DBRC’

TYPE=’IMS’

TYPE=’IMSCON’

TYPE=’OM’

TYPE=’OTHER’

TYPE=’RM’

TYPE=’SCI’

SUBTYPE=subtype

PROTOCOL=RQST

Chapter 5. CSL Structured Call Interface 183

The output buffer is not preallocated by the caller. After being returned by the

request, this word contains the address of a buffer containing the query output.

It is the caller’s responsibility to release this storage by issuing the CSLSCBFR

FUNC=RELEASE request when it is through with the storage.

PARM=symbol

PARM=(r1-r12)

(Required) - Specifies the CSLSCQRY parameter list. The length of the

parameter list must be equal to the parameter list length EQU value defined by

SQRY_PARMLN.

PROTOCOL=RQST

(Optional) - SCI protocol for sending the request to SCI. RQST indicates that

the SCI request interface protocol is to be used for the request.

RETCODE=symbol

RETCODE=(r1-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCQRY

return code. SCI return codes are defined in CSLSRR. Possible return codes

for CSLSCQRY are described in “CSLSCQRY Return and Reason Codes” on

page 185.

RSNCODE=symbol

RSNCODE=(r1-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. SCI

reason codes are defined in CSLSRR. Possible reason codes for CSLSCQRY

are described in “CSLSCQRY Return and Reason Codes” on page 185.

SCITOKEN=symbol

SCITOKEN=(r1-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token

uniquely identifies this connection to SCI. The SCI token was returned by a

successful CSLSCREG FUNC=REGISTER request.

SCOPE=IMSPLEX

SCOPE=LOCAL

SCOPE=TYPE

(Optional) - Specifies the scope of information that is being requested.

IMSPLEX

This option returns data for all of the members in the IMSplex.

LOCAL

This option returns information for all of the members on the local z/OS

image.

TYPE

This option returns information for all of the members that are of the

specified IMSplex member type (and optionally subtype).

SUBTYPE=symbol

SUBTYPE=(r1-r12)

(Optional) - Four-byte input parameter that specifies the address of an 8-byte

subtype that further qualifies the IMSplex member type about which information

is being requested. This subtype is defined by the IMSplex member and was

specified on the CSLSCREG request.

 This parameter is valid only when SCOPE=TYPE.

TYPE=symbol

TYPE=’AOP’

TYPE=’BATCH’

184 Common Service Layer Guide and Reference

TYPE=’CQS’

TYPE=’DBRC’

TYPE=’IMS’

TYPE=’IMSCON’

TYPE=’OM’

TYPE=’OTHER’

TYPE=’RM’

TYPE=’SCI’

(Optional) - Specifies the IMSplex member type for which the query is being

issued. SCI will return information for all of the members that are of the

specified IMSplex member type (and, optionally, subtype). This parameter is

required when SCOPE=TYPE.

 If this parameter is passed as a literal, the literal must be enclosed in single

quotes. If it is passed as a symbol, the symbol points to a word in storage that

contains the code for the member type. If it is passed as a register, the register

contains the member type code in the low-order half word of the register.

 The code for the member type can be obtained by using the CSLSTPIX macro.

For information on member types, refer to “CSLSCREG Parameters” on page

189.

CSLSCQRY Return and Reason Codes

Table 71 lists the return and reason codes that can be returned on a CSLSCQRY

macro request. Also included is the meaning of a reason code (that is, what

possibly caused it). In addition, CSLSCQRY can return any of the return codes

listed in Table 76 on page 202.

 Table 71. CSLSCQRY Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' Request completed successfully.

X'01000008' X'00002050' The caller of the service attempted to pass an invalid

parameter list. The request is rejected.

X'0100000C' X'00003004' No member data was returned for the request.

X'01000014' X'00005048' SCI was unable to obtain storage for the output area of

the request.

CSLSCQSC: Quiesce Request

The SCI Quiesce request tells SCI to stop routing messages and requests that

have been routed by TYPE to the issuing IMSplex member. After this request has

successfully completed, the only messages and requests that are routed to the

member are those that are routed directly by SCITOKEN or by NAME.

Note: Because of the asynchronous nature of the processes within the IMSplex

and z/OS, messages and requests routed by TYPE might still be received by

the IMSplex member after successful completion of the CSLSCQSC

FUNC=QUIESCE request. The potential for this occurring is small, but it can

happen. The IMSplex member must be able to handle a message or request

coming in after the CSLSCQSC FUNC=QUIESCE has successfully

completed.

CSLSCQSC Syntax

The syntax for the CSLSCQSC request follows.

Chapter 5. CSL Structured Call Interface 185

CSLSCQSC DSECT Syntax: Use the DSECT function of a CSLSCQSC request

to include equate (EQU) statements in your program for the CSLSCQSC parameter

list length and the CSLSCQSC return and reason codes.

�� CSLSCQSC FUNC=DSECT ��

CSLSCQSC QUIESCE Syntax: The CSLSCQSC FUNC=QUIESCE request

quiesces the connection between SCI and the IMSplex member. After the

successful completion of the request, only messages and requests that are routed

directly by SCITOKEN or by NAME are sent to this IMSplex member.

�� CSLSCQSC FUNC=QUIESCE PARM=parm SCITOKEN=scitoken RETCODE=returncode �

� RSNCODE=reasoncode ��

CSLSCQSC Parameters

The parameters for the CSLSCQSC request follow.

PARM=symbol

PARM=(r1-r12)

(Required) - Specifies the CSLSCQSC parameter list. The length of the

parameter list must be equal to the parameter list length EQU value defined by

SQSC_PARMLN.

RETCODE=symbol

RETCODE=(r1-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. SCI

return codes are defined in CSLSRR. Possible return codes for CSLSCQSC are

described in Table 72.

RSNCODE=symbol

RSNCODE=(r1-r12)

(Required) - Specifies a 4-byte field to receive the reason code on output. SCI

reason codes are defined in CSLSRR. Possible reason codes for CSLSCQSC

are described in Table 72.

SCITOKEN=symbol

SCITOKEN=(r1-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token

uniquely identifies this connection to SCI. The SCI token was returned by a

successful CSLSCREG FUNC=REGISTER request.

CSLSCQSC Return and Reason Codes

Table 72 lists the return and reason codes that can be returned on a CSLSCQSC

macro request. Also included is the meaning of a reason code (that is, what

possibly caused it). In addition, CSLSCQSC can return any of the return codes in

Table 70 on page 181.

 Table 72. CSLSCQSC Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' The request completed successfully.

X'01000008' X'00002038' The parameter list version is invalid.

X'01000010' X'00004000' SCI is not active.

X'00004FFF' The function is not supported.

186 Common Service Layer Guide and Reference

|

Table 72. CSLSCQSC Return and Reason Codes (continued)

Return Code Reason Code Meaning

X'01000014' X'00005000' An SCI internal error occurred.

CSLSCRDY: Ready Request

The SCI ready request enables the IMSplex member to receive messages and

requests that are routed by TYPE. After the CSLSCREG request is issued and until

CSLSCRDY is issued, the IMSplex member can only receive requests that are

routed directly to a single target address space. The IMSplex member can send

messages and requests that are routed by any method.

Note: The IMSplex member must be ready to process messages and requests that

have been routed by TYPE when CSLSCRDY is issued. Because of the

asynchronous nature of an IMSplex, the member might receive a message

or request that has been routed by TYPE before control is returned after

issuing CSLSCRDY.

CSLSCRDY Syntax

The syntax examples for the CSLSCRDY request follow.

DSECT Syntax: Use the DSECT function of a CSLSCRDY request to include

equate (EQU) statements in your program for the CSLSCRDY parameter list length

and the CSLSCRDY return and reason codes.

�� CSLSCRDY FUNC=DSECT ��

READY Syntax: The CSLSCRDY FUNC=READY request tells SCI that the

IMSplex member is now ready to receive messages and requests that are routed by

an IMSplex member type.

�� CSLSCRDY FUNC=READY SCITOKEN=scitoken PARM=parm RETCODE=returncode �

� RSNCODE=reasoncode ��

CSLSCRDY Parameters

The parameters for the CSLSCRDY request follow.

PARM=symbol

PARM=(r1-r12)

(Required) - Specifies the CSLSCRDY parameter list. The length of the

parameter list must be equal to the parameter list length EQU value defined by

SRDY_PARMLN.

RETCODE=symbol

RETCODE=(r1-r12)

(Required) - Specifies a 4-byte field to receive the return code on output. SCI

return codes are defined in CSLSRR. Possible reason codes for CSLSCRDY

are described in “CSLSCRDY Return and Reason Codes” on page 188.

RSNCODE=symbol

RSNCODE=(r1-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCRDY

Chapter 5. CSL Structured Call Interface 187

reason code. SCI reason codes are defined in CSLSRR. Possible reason codes

for CSLSCRDY are described in “CSLSCRDY Return and Reason Codes.”

SCITOKEN=symbol

SCITOKEN=(r1-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token

uniquely identifies this connection to SCI. The SCI token was returned by a

successful CSLSCREG FUNC=REGISTER request.

CSLSCRDY Return and Reason Codes

Table 73 lists the return and reason codes that can be returned on a CSLSCRDY

macro request. Also included is the meaning of a reason code (that is, what

possibly caused it). In addition, CSLSCRDY can return any of the return codes in

Table 70 on page 181.

 Table 73. CSLSCRDY Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' The request completed successfully.

X'00002038' The parameter list version is invalid.

X'01000010' X'00004000' SCI is not active.

X'00004FFF' The function is not supported.

X'01000014' X'00005000' An SCI internal error occurred.

CSLSCREG: Registration Request

The SCI registration request is used to create a connection between an IMSplex

member and SCI. Before SCI can be used for communication within the IMSplex,

an IMSplex member must issue the CSLSCREG request and receive an SCI token

when the request has successfully completed. This token is used with all

subsequent SCI requests. If SCI terminates while the IMSplex member is active, the

member is still registered when SCI becomes active again. The SCI token that the

member received on the initial CSLSCREG request is still valid.

Restriction: CSLSCREG is not supported when the caller’s address space has

been marked non-swappable by a SYSEVENT DONTSWAP call. Issuing a CSLSCREG in

this environment produces unpredictable results. A caller that issued a SYSEVENT

DONTSWAP must issue a SYSEVENT OKSWAP before registering with SCI.

CSLSCREG Syntax

The syntax for the CSLSCREG request follows.

CSLSCREG DSECT Syntax: Use the DSECT function of a CSLSCREG request

to include equate (EQU) statements in your program for the CSLSCREG parameter

list length, the IMSplex types and the CSLSCREG return and reason codes.

�� CSLSCREG FUNC=DSECT ��

CSLSCREG REGISTER Syntax: The CSLSCREG FUNC=REGISTER request

establishes a connection between an IMSplex member and SCI. An SCI token is

returned on successful completion of this request. This token must be used on all

subsequent SCI requests. Until the CSLSCRDY FUNC=READY request is issued,

the IMSplex member receives only messages and requests that are routed directly

to it (by SCITOKEN or by NAME). Messages and requests that are routed by TYPE

188 Common Service Layer Guide and Reference

are not routed to this member. Messages and requests routed by any method can

be sent by this member when the CSLSCREG FUNC=READY request has been

successfully completed. The syntax for the REGISTER function of the CSLSCREG

request follows.

CSLSCREG Parameters

The parameters for the CSLSCREG request follow.

ABNDSTAT=NO

ABNDSTAT=YES

(Optional) - Indicates if SCI is to keep track of the member if the member

abnormally terminates. If ABNDSTAT=YES is specified, SCI will retain an entry

for the member with a status of ABTERM. If the member normally terminates or

if the member abnormally terminates after a successful CSLSCDRG, SCI does

not keep a record of the member.

 This parameter is ignored for non-authorized IMSplex members.

IMSPLEX=symbol

�� CSLSCREG FUNC=REGISTER PARM=parm IMSPLEX=imsplex MBRNAME=membername �

�
MBRVSN=memberversion

 TYPE=membertypecode

TYPE=’AOP’

TYPE=’BATCH’

TYPE=’CQS’

TYPE=’DBRC’

TYPE=’IMS’

TYPE=’IMSCON’

TYPE=’OM’

TYPE=’OTHER’

TYPE=’RM’

TYPE=’SCI’

SUBTYPE=subtype
 �

�
NOTIFYEXIT=notifyexit

NOTIFYPARM=notifyparm

 �

�
INPUTEXIT=inputexit

INPUTPARM=inputparm

 SCITOKEN=scitoken �

�

SCIVSN=sciversion

JOBNAME=jobname

 ABNDSTAT=NO

ABNDSTAT=YES

�

�
 TCB=CURRENT

TCB=PARENT

TCB=JOBSTEP

TCB=tcb

RETNAME=returnname

RETTOKEN=returntoken

�

� RETCODE=returncode RSNCODE=reasoncode ��

Chapter 5. CSL Structured Call Interface 189

IMSPLEX=(r2-r12)

(Required) - Specifies the address of a 1- to 5-character IMSplex name. The

IMSPlex name identifies the SCI to which this request is directed. If specified as

a symbol, the symbol references storage that contains the IMSplex name.

INPUTEXIT=symbol

INPUTEXIT=(r2-r12)

(Optional) - Specifies the address of the SCI input exit routine. The input exit is

called each time there is a message or request for the member.

INPUTPARM=symbol

INPUTPARM=(r2-r12)

(Optional) - Specifies the address of an 8-byte area that contains member data.

This data is passed to the input exit routine each time it is called. If specified as

a symbol, the symbol references storage that contains the member data.

JOBNAME=symbol

JOBNAME=(r2-r12)

(Optional) - Specifies the address of an 8-byte area to receive the SCI jobname.

MBRNAME=symbol

MBRNAME=(r2-r12)

(Required) - Specifies the address of an 8-byte name of the IMSplex member

registering with SCI. For an authorized member, this name must be unique

within the IMSplex. For a non-authorized member, this name does not need to

be unique. If it is specified as a symbol, the symbol refers to storage that

contains the IMSplex member name. Valid characters for the name are A-Z,

0-9, and special characters @, #, and $.

MBRVSN=symbol

MBRVSN=(r2-r12)

(Optional) - Specifies the address of a 4-byte version of the IMSplex member

registering with SCI. This version number is passed in the parameter list of the

SCI Notify exit when this IMSplex member is the subject of the event. It is also

passed in the parameter list of the SCI Input exit for messages and requests

that originate from this member. If MBRVSN is not specified, the version

number in the exit parameter list is set to zeros. If it is specified as a symbol,

the symbol references storage that contains the IMSplex member version.

 SCI does not validate this field; however, the field can be output on the QRY

IMSPLEX command. It is assumed to have the following format: X'00vvrrmm'.

v 00 - this byte is ignored

v vv - version number

v rr - release number

v mm - modification level or subrelease number

For example, X'00080100' would be output as 8.1.0.

NOTIFYEXIT=symbol

NOTIFYEXIT=(r2-r12)

(Optional) - Specifies the address of the SCI Notify exit routine. The Notify exit

is driven whenever there is a change of status of an IMSplex member. See

“CSL SCI Notify Client Exit Routine” on page 166 for a list of events that result

in this exit being driven.

NOTIFYPARM=symbol

NOTIFYPARM=(r2-r12)

(Optional) - Specifies the address of an 8-byte area that contains member data.

190 Common Service Layer Guide and Reference

This data is passed to the Notify exit routine each time it is called. If it is

specified as a symbol, the symbol references storage that contains the member

data.

PARM=symbol

PARM=(r2-r12)

(Required) - Specifies the address of a parameter list used by the request to

pass the parameters to SCI. The length of the storage must be at least equal to

the value of SREG_LN.

RETCODE=symbol

RETCODE=(r2-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCREG

return code. SCI return codes are defined in CSLSRR. Possible return codes

for CSLSCREG are described in “CSLSCREG Return and Reason Codes” on

page 193.

RETNAME=symbol

RETNAME=(r2-r12)

(Optional) - Specifies the address of an 8-byte field to receive the name of the

SCI that processes the registration request.

RETTOKEN=symbol

RETTOKEN=(r2-r12)

(Optional) - Specifies the address of a 16-byte field to receive the SCI token of

the SCI that processes the registration request.

RSNCODE=symbol

RSNCODE=(r2-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCREG

reason code. SCI reason codes are defined in CSLSRR. Possible reason codes

for CSLSCREG are described in “CSLSCREG Return and Reason Codes” on

page 193.

SCITOKEN=symbol

SCITOKEN=(r2-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token

uniquely identifies this connection to SCI. The SCI token was returned by a

successful CSLSCREG FUNC=REGISTER request.

SCIVSN=symbol

SCIVSN=(r2-r12)

(Optional) - Specifies the address of a 4-byte field to receive the SCI version

number. The version number has the following format: 00vvrrmm.

00 This byte is reserved for future use. Currently, it is always 00.

vv Version number.

rr Release number.

mm Modification level or subrelease number.

Example: SCI version 1.1.0 is shown as X'00010100'.

SUBTYPE=symbol

SUBTYPE=(r2-r12)

(Optional) - Specifies the address of the 8-byte subtype of the member

registering with SCI. The subtype is defined by the user and can be any eight

characters. If it is specified as a symbol, the symbol references storage that

contains the subtype. If not specified, this parameter is set to blanks. If

SUBTYPE is not specified, it will be set to blanks.

Chapter 5. CSL Structured Call Interface 191

The subtype can contain alphanumeric characters (A-Z, 0-9), or printable

characters (not case sensitive), with the exception of the characters &, <, and >.

OM converts any invalid data placed in this field to periods (.) before sending

the XML output to the client.

TCB=CURRENT

TCB=JOBSTEP

TCB=PARENT

TCB=symbol

TCB=(r2-r12)

(Optional) - Specifies the TCB with which the new SCI connection is associated.

The SCI connection persists until one of the following occurs:

v The member deregisters by using CSLSCDRG.

v The TCB associated with the connection terminates.

All callers of CSLSCREG can specify the following values for the TCB

parameter:

CURRENT

Associates the SCI connection with the currently executing TCB. This is the

default.

JOBSTEP

Associates the SCI connection with the address space jobstep TCB (the

TCB pointed to by ASCBXTCB).

PARENT

Associates the SCI connection with the TCB that attached the

currently-executing TCB.

 For non-authorized callers, the indicated TCB must have the same storage key

associated with it as the caller’s current PSW key (that is, TCBPKF must match

the current PSW key).

 Authorized callers can, in addition, identify an explicit TCB by specifying a

symbol or register. If specified as a symbol, the symbol must be the label on a

word of storage containing the address of the TCB. If specified as a register,

the register must contain the TCB address.

TYPE=membertypecode

TYPE=’AOP’

TYPE=’BATCH’

TYPE=’CQS’

TYPE=’DBRC’

TYPE=’IMS’

TYPE=’IMSCON’

TYPE=’OM’

TYPE=’OTHER’

TYPE=’RM’

TYPE=’SCI’

(Required) - Specifies the SCI member type of the address space that is

registering with SCI.

 If this parameter is passed as a literal, the literal must be enclosed in single

quotes. If this parameter is passed as a symbol or register, the symbol or

register must contain the member type code.

 The code for the member type can be obtained by using the CSLSTPIX macro.

Member types include:

192 Common Service Layer Guide and Reference

AOP This SCI type is an automated operator program. It interacts with OM

by sending commands and receiving responses to the commands.

Batch This SCI type is an IMS batch region. It interacts as an IMS DL/I batch

or utility region.

CQS This SCI type is an IMS Common Queue Server. It provides access to

a set of common queues within the IMSplex.

DBRC

This SCI type is an IMS Database Recovery Control Region.

IMS This SCI type is an IMS region. It can include the database manager,

transaction manager, and FDBR (an IMS control region that recovers

database resources when an IMS database manager fails). SUBTYPE

is used to further qualify a particular control region (for example, DBDC,

DBCTL, DCCTL, or FDBR).

IMSCON

This SCI type is a connector to IMS. It acts as an interface between

IMS and protocols that are not supported by IMS directly (such as

TCP/IP).

OM This SCI type is an IMS Operations Manager, which is part of the CSL.

It receives commands from AOPs, routes the commands to other

members of the IMSplex that have registered for the command,

consolidates the responses to the command, and sends the output back

to the originating AOP.

Other This SCI type is any other address space that does not fall into one of

the defined SCI types.

RM This SCI type is an IMS Resource Manager, which is part of the CSL. It

manages resources within the IMSplex and coordinates IMSplex-wide

processes. SUBTYPE is used to further qualify whether there is a single

RM in the IMSplex (SNGLRM) or there are multiple RMs in the IMSplex

(MULTRM).

SCI This SCI type is an IMS SCI, which is part of the CSL. It manages

communications within the IMSplex.

CSLSCREG Return and Reason Codes

Table 74 lists the return and reason codes that can be returned on a CSLSCREG

macro request. Also included is the meaning of a reason code (that is, what

possibly caused it).

 Table 74. CSLSCREG Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' The request completed successfully.

X'01000004' X'00001000' The member is already registered with SCI. The

member’s current SCITOKEN is returned.

X'01000008' X'00002010' An invalid type was passed

X'00002038' The parameter list version is invalid.

Chapter 5. CSL Structured Call Interface 193

|
|
|
|
|

|
|
|
|
|

Table 74. CSLSCREG Return and Reason Codes (continued)

Return Code Reason Code Meaning

X'01000010' X'00004000' SCI is not active.

X'00004004' CSLSRG00 could not be loaded.

X'00004008' The user ID of the member address space is not

authorized to register with this SCI.

X'00004010' The member name, membername, is not unique for the

authorized client. The registration is rejected.

X'00004028' A non-authorized member tried to register as an

authorized system SCI type.

X'00004FFF' The function is not supported.

X'01000014' X'00005000' An SCI internal error occurred.

X'00005004' An ESTAE add error occurred.

X'00005008' A BPE SVC error occurred.

X'0000500C' A z/OS Name/Token retrieve error occurred.

X'00005010' An error occurred while establishing ResMgr.

X'00005014' An error occurred while obtaining storage.

X'00005018' An error occurred while obtaining a TTOKEN.

X'0000501C' An ALESERV error occurred.

X'00005020' An ENQ resource error occurred.

X'00005050' A BPECGBET error occurred in CSLSRGS0.

X'00005054' An ALESERV error occurred in CSLSRGS0.

X'00005058' A BPEHTADD error occurred in CSLSRGS0.

X'00005064' A BPEHTFND token error occurred in CSLSRGS0.

X'00005070' The SCI buffer manager could not be initialized.

X'00005080' The XCF join for the member failed.

X'00005084' A non-authorized member specified an explicit

connection TCB.

X'00005088' The connection TCB key does not match the

CSLSCREG caller’s key.

X'0000508C' The TCB type code passed on the CSLSCREG request

is invalid.

X'00005090' Error enqueueing registration AWE. This is an internal

error.

X'00005094' Error scheduling SRB to SCI. This is an internal error.

X'00005500' An abend occurred during CSLSCREG processing.

CSLSCRQR Request Return Request

CSLSCRQR returns a request to the IMSplex member from which the request

originated. It should be issued when the server has completed the request and is

ready to return the output from the request. It copies the output back to the

requestor’s address space.

Only request servers can issue CSLSCRQR because an IMSplex member cannot

issue the macro without first receiving a request. A request server must be

authorized and running key 7.

194 Common Service Layer Guide and Reference

|

|

CSLSCRQR Syntax

The syntax for the CSLSCRQR request follows.

CSLSCRQR DSECT Syntax: Use the DSECT function of a CSLSCRQR request

to include equate (EQU) statements in your program for the CSLSCRQR parameter

list length and the CSLSCRQR return and reason codes.

�� CSLSCRQR FUNC=DSECT ��

CSLSCRQR RETURN Syntax: The syntax for the CSLSCRQR FUNC=RETURN request

follows.

�� CSLSCRQR FUNC=RETURN SCITOKEN=scitoken PARM=parm RQSTTKN=requesttoken �

�
RQSTRC=requestreturncode

RQSTRSN=requestreasoncode
 �

� RETCODE=returncode RSNCODE=reasoncode ��

CSLSCRQR Parameters

The parameters for the CSLSCRQR request follow.

PARM=symbol

PARM=(r1-r12)

(Required) - Specifies the CSLSCRQR parameter list. The length of the

parameter list must be equal to the parameter list length EQU value defined by

SRQR_PARMLN.

RQSTRC=symbol

RQSTRC=(r1-r12)

(Optional) - Specifies the return code that is associated with the request being

returned. This return code will be given to the requesting member in the storage

pointed to by the RETCODE parameter of the CSLSCRQS that originated this

request. If this parameter is not specified, a return code of zero will be given to

the requesting member.

 If specified as a symbol, the symbol references storage that contains the return

code.

RQSTRSN=symbol

RQSTRSN=(r1-r12)

(Optional) - Specifies the reason code that is associated with the request being

returned. This reason code will be given to the requesting member in the

storage pointed to by the RSNCODE parameter of the CSLSCRQS that

originated this request. If this parameter is not specified, a reason code of zero

will be given to the requesting member.

 If specified as a symbol, the symbol references storage that contains the return

code.

RQSTTKN=symbol

RQSTTKN=(r1-r12)

(Required) - Specifies the request token that is associated with the request

being returned. This request token can be obtained from the input exit

parameter list (INXP_RQSTTKN) when the request was presented to the

request processing member.

Chapter 5. CSL Structured Call Interface 195

If specified as a symbol, the symbol references storage that contains the return

code.

RETCODE=symbol

RETCODE=(r1-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCRQR

return code. SCI return codes are defined in CSLSRR. Possible return codes

for CSLSCRQR are described in “CSLSCRQR Return and Reason Codes.”

RSNCODE=symbol

RSNCODE=(r1-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCRQR

reason code. SCI reason codes are defined in CSLSRR. Possible reason codes

for CSLSCRQR are described in “CSLSCRQR Return and Reason Codes.”

SCITOKEN=symbol

SCITOKEN=(r1-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token

uniquely identifies this connection to SCI. The SCI token was returned by a

successful CSLSCREG FUNC=REGISTER request.

CSLSCRQR Return and Reason Codes

Table 75 lists the return and reason codes that can be returned on a CSLSCRQR

macro request. Also included is the meaning of a reason code (that is, what

possibly caused it).

 Table 75. CSLSCRQR Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' The request completed successfully.

X'01000008' X'00002004' The function passed to the SCI interface PC routine

was invalid.

X'00002018' The SCI token is invalid.

X'00002038' The parameter list version is invalid.

X'01000010' X'00004000' SCI is not active.

X'0000400C' The target member is not active.

X'00004FFF' The function is not supported.

X'01000014' X'00005000' An SCI internal error occurred.

X'0000502C' The member could not be found due to an internal BPE

hash table services error.

X'00005030' An SCI buffer could not be obtained.

X'00005034' A key 7 buffer in the SCI address space could not be

obtained for a copy of PHDR and parameters.

X'00005038' An IEAMSCHD error occurred; SRB could not be

scheduled to the target address space.

X'00005040' The request is not outstanding and cannot be returned.

X'00005044' An SCI-allocated output buffer could not be obtained.

X'00005500' An abend occurred during the processing of an SCI

request.

X'00005504' An abend occurred when the member parameters were

copied to the target address space.

196 Common Service Layer Guide and Reference

CSLSCRQS: Send Request Request

CSLSCRQS allows an IMSplex member to send a request to another member in

the IMSplex. The target member can be specified by SCITOKEN, member name, or

member type.

A request in an IMSplex can contain both input and output data (from the target

member’s perspective). This contrasts to a message that can only contain input

data (again, from the target member’s perspective). The data of a request is copied

to the target member’s address space. The function is processed, and the output is

returned to the requestor’s address space. If the request included an ECB, control

is returned to the requesting module after the request has been processed by SCI.

The requestor must then wait on the ECB.

The ECB is posted when the request processing has completed. The requestor

then looks at the RETCODE and RSNCODE fields to determine the outcome of the

request. If no ECB is included in the request, the RETCODE and RSNCODE fields

can be used to determine the outcome of the request when the requesting module

gets control back from SCI.

Note: Before issuing CSLSCRQS, the requester should clear the fields that will

receive the address and length of the SCI Allocated Output parameters. If

the request is not sent to the destination because of an error, or if there is no

data to output, SCI will not update the length and address fields.

CSLSCRQS Syntax

The syntax for the CSLSCRQS request follows.

DSECT Syntax: Use the DSECT function of a CSLSCRQS request to include

equate (EQU) statements in your program for the CSLSCRQS parameter list length,

the IMSplex types and the CSLSCRQS return and reason codes.

�� CSLSCRQS FUNC=DSECT ��

SEND REQUEST Syntax: The syntax for the CSLSCRQS FUNC=SEND request follows.

Chapter 5. CSL Structured Call Interface 197

CSLSCRQS Parameters

The parameters for the CSLSCRQS request follow.

ECB=symbol

ECB=(r1-r12)

(Optional) - Specifies the address of a z/OS ECB used for asynchronous

requests. When the request is complete, the ECB specified is posted. If an ECB

is not specified, the task is suspended until the request is complete. If an ECB

is specified, the invoker of the macro must issue a WAIT (or equivalent) after

receiving control from CSLSCRQS, before using or examining any data

returned by this macro (including the RETCODE and RSNCODE fields).

FUNCTYPE=DEST

FUNCTYPE=SENDER

(Optional) - Specifies that the MBRFUNC and MBRSFUNC are defined by the

DEST (destination) of this request or the SENDER of the request. This indicator

is passed to the recipient of the request in the SCI Input exit parameter list.

MBRFUNC= symbol

MBRFUNC= (r1-r12)

(Required) - Specifies a 4-byte member function code that is passed to the

destination of the request in the SCI Input exit parameter list. This function

code, along with the MBRSFUNC, identifies the request that is being sent.

�� CSLSCRQS FUNC=SEND SCITOKEN=scitokenaddress PARM=parmaddress �

� MBRPARM=mbrparmlistaddress MBRPCNT=mbrparmcount MBRFUNC=mbrfunctioncode �

�

MBRSFUNC=mbrsubfunctioncode

 FUNCTYPE=DEST

FUNCTYPE=SENDER

ECB=ecbaddress

�

� TOKEN=tokenaddress

NAME=nameaddress

A

 RETCODE=returncodeaddress RSNCODE=reasoncodeaddress �

�
RETNAME=returnnameaddress

RETTOKEN=returntokenaddress
 ��

A:

 TYPE=membertypecode

TYPE=’AOP’

TYPE=’BATCH’

TYPE=’CQS’

TYPE=’DBRC’

TYPE=’IMS’

TYPE=’IMSCON’

TYPE=’OM’

TYPE=’OTHER’

TYPE=’RM’

TYPE=’SCI’

SUBTYPE=subtypeaddress

198 Common Service Layer Guide and Reference

If MBRFUNC is a symbol, the symbol points to a four-byte area of storage that

contains the function code.

MBRPARM= symbol

MBRPARM= (r1-r12)

(Required) - Specifies the address of a pre-built parameter list. This parameter

list must be built by the requesting module and consists of sets of triplets. Each

triplet describes a single parameter in the member parameter list and consists

of:

parameterlength

Four-byte parameter that specifies the length of the member parameter.

parameteraddress

Four-byte parameter that specifies the address of the member

parameter.

datatype

Four-byte parameter that specifies how this parameter is to be handled

by SCI. Equates are provided for each type (included with

CSLSCODE). These equates can be used to set the value of data type.

Possible values are:

IN The parameter is an input parameter. It is copied to the

destination address space with the request.

OUT The parameter is an output parameter. It is copied back to the

requesting address space when the request is completed by the

server. The storage for the parameter must be allocated before

the request is issued.

IO The parameter is both an input and an output parameter. It is

copied to the target address space with the request and it is

copied back to the requesting address space when the request

is complete.

SCI The parameter is an SCI allocated output parameter. The

storage for the parameter is allocated in the requestor’s

address space when the request is complete. The address of

the storage will be returned in the parameter address field and

the length will be returned in the parameter length field. The

storage must be released by the requestor using the

CSLSCBFR request. The eight bytes immediately in front of the

address returned for an SCI-allocated output parameter are

available for use by the requestor. These eight bytes are not

cleared, and might contain residual data from a prior use of the

buffer.

The two methods for passing parameters in a parameter list are by address and

by value. Both of these methods can be used when passing parameters in a

CSLSCRQS request. The triplet must be setup so that SCI will handle the

parameter properly.

v By address

To pass a parameter by address, the address of the parameter must be

passed in parameteraddress and the length of the parameter must be passed

in parameterlength. SCI will get the parameter from parameteraddress for

data type IN and IO and will store the parameter at parameteraddress for

data type OUT and IO. The address at which the parameter is stored and its

length is returned for data type SCI.

v By value

Chapter 5. CSL Structured Call Interface 199

To pass a parameter by value, the parameter must be passed in

parameteraddress and zero must be passed in parameterlength. When the

length is zero, SCI will copy the value contained in parameteraddress to the

destination for data type IN. All other data types must be passed by address

since SCI requires an address to store any output parameters.

 Member Parameter List: The user parameters specified here are presented to

the program that receives the request in the member parameter list, the

address of which is contained in the Input Exit Parm area field

INXP_MBRPLPTR. Each parameter is represented by eight bytes, the first four

bytes contain parameterlength and the second four bytes contain

parameteraddress (if parameteraddress is an address, the second four bytes

point to storage in the local address space, not the requesting address space).

If the parameter’s data type is SCI, the first four bytes will contain a length of

four and the second word’s value is unpredictable.

 Null Parameters: In some cases a request processing module expects a set

number of parameters with a defined order. If a request is to be sent that does

not contain all the parameters, null parameters must be sent to ensure the data

buffer contains everything that is expected. Null parameters can be sent by

specifying zero for parameterlength and parameteraddress. The eights bytes

that represent the parameter in the data buffer will contain zeros. This is true for

any data type (IN, OUT, IO or SCI) or method of passing parameters (by

address or by value).

MBRPCNT=symbol

MBRPCNT=(r1-r12)

(Required) - Specifies a 4-byte field that contains the number of member

parameters that are included in MBRPARM.

MBRSFUNC=symbol

MBRSFUNC=(r1-r12)=

(Optional) - Specifies a 4-byte member subfunction code that is passed to the

destination of the request in the SCI input exit parameter list. This subfunction

code, along with the MBRFUNC, identifies the request that is being sent.

 If MBRSFUNC is a symbol, the symbol points to a 4-byte area of storage that

contains the sub-function code.

NAME=symbol

NAME=(r1-r12)

(Optional) - Specifies the address of an 8-byte member name of the destination

of this request. This name can be obtained from the Notify exit (when the

member joins the IMSplex) or by issuing a CSLSCQRY request.

Note: One of the routing parameters (NAME, TOKEN or TYPE) must be

included.

PARM=symbol

PARM=(r1-r12)

(Required) - Specifies the address of a parameter list used by the request to

pass the parameters to SCI. The length of the storage must be at least equal to

the value of SRQS_LN.

RETCODE=symbol

RETCODE=(r1-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCRQS

200 Common Service Layer Guide and Reference

return code. SCI return codes are defined in CSLSRR. Possible return codes

for CSLSCRQS are described in “CSLSCRQS Return and Reason Codes” on

page 202.

RETNAME=symbol

RETNAME=(r1-r12)

(Optional) - Specifies the address of an 8-byte field to receive the name of the

SCI that processes the request.

RETTOKEN=symbol

RETTOKEN=(r1-r12)

(Optional) - Specifies the address of a 16-byte field to receive the SCI token of

the SCI that processes the request.

RSNCODE=symbol

RSNCODE=(r1-r12)

(Required) - Specifies the address of a 4-byte field to receive the CSLSCRQS

reason code. SCI reason codes are defined in CSLSRR. Possible reason codes

for CSLSCRQS are described in “CSLSCRQS Return and Reason Codes” on

page 202.

SCITOKEN=symbol

SCITOKEN=(r1-r12)

(Required) - Specifies a 16-byte field containing the SCI token. This token

uniquely identifies this connection to SCI. The SCI token was returned by a

successful CSLSCREG FUNC=REGISTER request.

TOKEN=symbol

TOKEN=(r1-r12)

(Optional) - Specifies the address of the 16-byte SCI token of the destination of

this request. This token can be obtained either from the Notify exit (when the

member joins the IMSplex) or by issuing a SLSCQRY message.

Note: One of the routing parameters (NAME, TOKEN, TYPE) must be

included.

TYPE=symbol

TYPE=(r1-r12)

TYPE=’AOP’

TYPE=’BATCH’

TYPE=’CQS’

TYPE=’DBRC’

TYPE=’IMS’

TYPE=’IMSCON’

TYPE=’OM’

TYPE=’OTHER’

TYPE=’RM’

TYPE=’SCI’

Input parameter that specifies the IMSplex member type of the IMSplex

member to which this request should be routed. The IMSplex member type

routing can be further qualified by using the SUBTYPE parameter. If TYPE is

specified, SCI chooses the IMSplex member of the requested type to which the

request is sent.

 If member type is specified as a literal, the literal must be enclosed in single

quotes. If this parameter is passed as a symbol or register, the symbol or

register must contain the member type code. The member type code can be

obtained by using the CSLSTPIX macro.

Chapter 5. CSL Structured Call Interface 201

For a description of the IMSplex member types, see “CSLSCREG: Registration

Request” on page 188.

Note: One of the routing parameters (NAME, TOKEN, TYPE) must be

included.

CSLSCRQS Return and Reason Codes

Table 76 lists the return and reason codes that can be returned on a CSLSCRQS

macro request. Also included is the meaning of a reason code (that is, what

possibly caused it).

 Table 76. CSLSCRQS Return and Reason Codes

Return Code Reason Code Meaning

X'00000000' X'00000000' The request completed successfully.

X'01000008' X'00002004' The function passed to the SCI interface PC routine is

invalid.

X'00002008' The number of parameters passed was either less than

or equal to zero, or greater than the maximum allowed.

X'00002010' An invalid type was passed.

X'00002018' This SCI token is invalid.

X'00002024' The PHDR length is invalid.

X'00002028' The routing data length is invalid.

X'0000202C' The request target member is not key 7.

X'00002030' The request target member is not authorized.

X'00002034' The length of the parameters is too large for a

non-authorized caller.

X'00002038' The parameter list version is invalid.

X'01000010' X'00004000' SCI is not active.

X'0000400C' The destination member is not active. The destination

member might have been designated by name, token,

or type.

X'0000401C' The calling member is in the process of deregistering

from SCI.

X'00004020' The request timed out.

202 Common Service Layer Guide and Reference

Table 76. CSLSCRQS Return and Reason Codes (continued)

Return Code Reason Code Meaning

X'01000014' X'00005000' An SCI internal error occurred.

X'00005004' An ESTAE add error occurred.

X'00005024' An SRB routine error occurred.

X'00005028' The routing type is invalid.

X'0000502C' The member could not be found due to an internal BPE

hash table services error.

X'00005030' A buffer in the destination member’s address space

could not be obtained.

X'00005034' A key 7 buffer in the SCI address space could not be

obtained for a copy of PHDR and parameters.

X'00005038' An IEAMSCHD error occurred; an SRB could not be

scheduled to the target address space.

X'0000503C' MRT could not be expanded.

X'00005044' An SCI-allocated output buffer could not be obtained.

X'0000504C' A message SRB key 7 parameter area could not be

obtained.

X'0000507C' An IXCMSGO error occurred.

X'00005500' An abend occurred during CSLSCRQS processing.

X'00005504' An abend occurred while the member parameters were

copied to the target address space.

Chapter 5. CSL Structured Call Interface 203

204 Common Service Layer Guide and Reference

Appendix A. CSL Operations Manager XML Output

Command responses that are returned through the OM API are embedded in XML

tags. XML output is generated for responses to the CSLOMI, CSLOMCMD, and

CSLOMQRY requests. The tags and their descriptions are described in the

following topics:

v “CSLOMI Output”

v “CSLOMCMD Output” on page 209

v “CSLOMQRY Output” on page 210

v “Descriptions of XML Tags Returned as CSL OM Response” on page 212

Note: The OM response is intended as a programming interface, not as an

interface that produces prebuilt messages to be displayed on a screen. For

OM requests, the output is passed back in the OUTPUT= buffer. For

messages, the output is returned to the SCI input exit. The OM response is

returned encapsulated in XML tags.

CSLOMI Output

One or more of the sets of tags in Figure 25 on page 206 is returned on each

CSLOMI request:

© Copyright IBM Corp. 2002, 2005 205

<imsout>

 <ctl>

 <omname> </omname>

 <omvsn> </omvsn>

 <xmlvsn> </xmlvsn>

 <statime> </statime>

 <stotime> </stotime>

 <staseq> </staseq>

 <stoseq> </stoseq>

 <rqsttkn1> </rqsttkn1>

 <rqsttkn2> </rqsttkn2>

 <rc> </rc>

 <rsn> </rsn>

 <rsnmsg> </rsnmsg>

 </ctl>

 <cmdclients>

 <mbr name="membername">

 <typ> </typ>

 <styp> </styp>

 <vsn> </vsn>

 <jobname> </jobname>

 </mbr>

 </cmdclients>

 <cmdsyntax> </cmdsyntax>

 <cmddtd> </cmddtd>

 <cmdtext> </cmdtext>

 <cmderr>

 <mbr name="membername">

 <typ> </typ>

 <styp> </styp>

 <rc> </rc>

 <rsn> </rsn>

 </mbr>

 </cmderr>

 <cmdsecerr>

 <exit>

 <rc> </rc>

 <userdata> </userdata>

 </exit>

 <saf>

 <rc> </rc>

 <racfrc> </racfrc>

 <racfrsn> </racfrsn>

 </saf>

 </cmdsecerr>

 <cmd>

 <master> </master>

 <userid> </userid>

 <verb> </verb>

 <kwd> </kwd>

 <input> </input>

 </cmd>

 <cmdrsphdr>

 <hdr ... />

 </cmdrsphdr>

 <cmdrspdata>

 <rsp> </rsp>

 </cmdrspdata>

 <msgdata>

 <mbr name="membername">

 <msg> </msg>

 </mbr>

 </msgdata>

</imsout>

Figure 25. CSLOMI XML Output

206 Common Service Layer Guide and Reference

|
|

|

The descriptions for each of these tags is in “Descriptions of XML Tags Returned as

CSL OM Response” on page 212. Following are some examples of CSLOMI XML

output. In Figure 26, the QUERY TRAN command was routed to IMSA with a timeout

value of 10 seconds. See IMS Version 9: Command Reference for more examples

of the cmdrsphdr and cmdrspdata fields.

 In Figure 27 on page 208, the OM returns a list of client names that are currently

registered for command processing.

OM API Input:

CMD(QUERY TRAN) NAME(SKS*)) ROUTE(IMSA) TIMEOUT(10) RQSTTKN2(QTRANCMD)

OM API Output:

<imsout>

 <ctl>

 <omname>OM1</omname>

 <omvsn>1.1.0</omvsn>

 <xmlvsn>1</xmlvsn>

 <statime>1999.341 12:52:44.46</statime>

 <stotime>1999.341 12:52:44.46</stotime>

 <staseq>B342BCC72A34D206</staseq>

 <stoseq>B342BCC75CD52208</stoseq>

 <rqsttkn2>QTRANCMD</rqsttkn2>

 <rc>0</rc> <rsn>0</rsn>

 </ctl>

 <cmd>

 <master>IMS1</master>

 <verb>QRY</verb>

 <kwd>TRAN</kwd>

 <input>QUERY TRAN</input>

 </cmd>

 <cmdrsphdr>

 <hdr slbl="TRAN" llbl="TranCode" scope="LCL" sort="a" key="1" scroll="no"

 len="8" dtype="CHAR" align="left" />

 <hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="4" scroll="no"

 len="8" dtype="CHAR" align="left" />

 <hdr slbl="CC" llbl="CC" scope="LCL" key="0" scroll="YES" len="4" dtype="INT"

 align="right" />

 </cmdrsphdr>

 <cmdrspdata>

 <rsp> TRAN(SKS1) MBR(IMSA) CC(0) </rsp>

 <rsp> TRAN(SKS2) MBR(IMSA) CC(0) </rsp>

 <rsp> TRAN(SKS3) MBR(IMSA) CC(0) </rsp>

 <rsp> TRAN(SKS4) MBR(IMSA) CC(0) </rsp>

 <rsp> TRAN(SKS5) MBR(IMSA) CC(0) </rsp>

 </cmdrspdata>

</imsout>

Figure 26. Issue IMS Command example

Appendix A. CSL Operations Manager XML Output 207

Figure 28 on page 209 returns the command syntax for currently registered

commands. In this example, the QUERY TRAN command is the only command

registered to OM, and the keyword NAME is associated with it.

OM API Input:

QUERY(CMDCLIENTS) RQSTTKN2(CLIENTLIST)

OM API Output:

<imsout>

 <ctl>

 <omname>OM1</omname>

 <omvsn>1.1.0</omvsn>

 <xmlvsn>1</xmlvsn>

 <statime>1999.341 12:52:44.46</statime>

 <stotime>1999.341 12:52:44.46</stotime>

 <staseq>B342BCC72A34D206</staseq>

 <stoseq>B342BCC75CD52208</stoseq>

 <rqsttkn2>CLIENTLIST</rqsttkn2>

 <rc>0</rc> <rsn>0</rsn>

 </ctl>

 <cmdclients>

 <mbr name=IMSA>

 <typ>DBDC</typ>

 <vsn>0800</vsn>

 <jobname>IMSJOB01</jobname>

 </mbr>

 <mbr name=IMSB>

 <typ>DBDC</typ>

 <vsn>0800</vsn>

 <jobname>IMSJOB02</jobname>

 </mbr>

 </cmdclients>

</imsout>

Figure 27. Query Client List example

208 Common Service Layer Guide and Reference

CSLOMCMD Output

The tags in Figure 29 on page 210 can be returned as a result of a CSLOMCMD

request.

OM API Input:

QUERY(CMDSYNTAX) RQSTTKN2(CMDLIST)

OM API Output:

<imsout>

 <ctl>

 <omname>OM1</omname>

 <omvsn>1.1.0</omvsn>

 <xmlvsn>1</xmlvsn>

 <statime>1999.341 12:52:44.46</statime>

 <stotime>1999.341 12:52:44.46</stotime>

 <staseq>B342BCC72A34D206</staseq>

 <stoseq>B342BCC75CD52208</stoseq>

 <rqsttkn2>CMDLIST</rqsttkn2>

 <rc>0</rc> <rsn>0</rsn>

 </ctl>

 <cmdsyntax>

 <root>

 <resource name="TRAN">

 <verb name="QUERY">

 <keyword name="NAME">

 <var name="tranname*"/>

 </keyword>

 </verb>

 </resource>

 </root>

 </cmdsyntax>

 <cmdtext>

 NEXT "Next"

 BACK "Back"

 FINISH "Finish"

 CANCEL "Cancel"

 SUMMARY "Summary"

 TRAN_NAME "Transaction"

 TRAN_QUERY_NAME "Query"

 TRAN_QUERY_NAME_NAME "Name"

 TRAN_QUERY_NAME_TEXT "Name of transaction."

 TRAN_QUERY_NAME_VAR "tranname*"

 </cmdtext>

</imsout>

Figure 28. Query Command Syntax example

Appendix A. CSL Operations Manager XML Output 209

CSLOMQRY Output

The tags in Figure 30 on page 211 can be returned as a result of a CSLOMQRY

request.

<?xml version="1.0"?>

<!DOCTYPE imsout SYSTEM "imsout.dtd">

<imsout>

 <ctl>

 <omname> </omname>

 <omvsn> </omvsn>

 <xmlvsn> </xmlvsn>

 <statime> </statime>

 <stotime> </stotime>

 <staseq> </staseq>

 <stoseq> </stoseq>

 <rqsttkn1> </rqsttkn1>

 <rc> </rc>

 <rsn> </rsn>

 </ctl>

 <cmderr>

 <mbr name="membername">

 <typ> </typ>

 <styp> </styp>

 <rc> </rc>

 <rsn> </rsn>

 </mbr>

 </cmderr>

 <cmdsecerr>

 <exit>

 <rc> </rc>

 <userdata> </userdata>

 </exit>

 <saf>

 <rc> </rc>

 <racfrc> </racfrc>

 <racfrsn> </racfrsn>

 </saf>

 </cmdsecerr>

 <cmd>

 <master> </master>

 <userid> </userid>

 <verb> </verb>

 <kwd> </kwd>

 <input> </input>

 </cmd>

 <cmdrsphdr>

 <hdr ... /hdr>

 </cmdrsphdr>

 <cmdrspdata>

 <rsp> </rsp>

 </cmdrspdata>

 <msgdata>

 <mbr name="membername">

 <msg> </msg>

 </mbr>

 </msgdata>

</imsout>

Figure 29. CSLOMCMD Output

210 Common Service Layer Guide and Reference

|

The command syntax and translatable text that is returned as a result of the

CSLOMQRY QUERY TYPE(CMDSYNTAX) request includes information for type-2

commands. For more information on these commands, see IMS Version 9:

Command Reference.

<imsout>

 <ctl>

 <omname> </omname>

 <omvsn> </omvsn>

 <xmlvsn> </xmlvsn>

 <statime> </statime>

 <stotime> </stotime>

 <staseq> </staseq>

 <stoseq> </stoseq>

 <rqsttkn1> </rqsttkn1>

 <rc> </rc>

 <rsn> </rsn>

 </ctl>

 <cmdclients>

 <mbr name="membername">

 <typ> </typ>

 <styp> </styp>

 <vsn> </vsn>

 <jobname> </jobname>

 </mbr>

 </cmdclients>

 <cmdsyntax> </cmdsyntax><cmddtd>

 <!ELEMENT imsout (ctl, cmdclients?, cmdsyntax?, cmddtd?,

 cmdtext?, cmderr?, cmd, cmdrsphdr, cmdrspdata?, msgdata?)>

 <!ELEMENT ctl (omname?, omvsn?, xmlvsn?, stattime, stotime,

 statseq, stoseq, rqsttkn1?, rqsttkn 2?, rc, rsn)>

 <!ELEMENT omname (#PCDATA) >

 <!ELEMENT omvsn (#PCDATA) >

 <!ELEMENT xmlvsn (#PCDATA) >

 <!ELEMENT statime (#PCDATA) >

 <!ELEMENT stotime (#PCDATA) >

 <!ELEMENT staseq (#PCDATA) >

 <!ELEMENT stoseq (#PCDATA) >

 <!ELEMENT rqsttkn1 (#PCDATA) >

 <!ELEMENT rqsttkn2 (#PCDATA) >

 <!ELEMENT rc (#PCDATA) >

 <!ELEMENT rsn (#PCDATA) >

 <!ELEMENT cmdclients (mbr+)>

 <!ELEMENT cmdsyntax (#PCDATA) >

 <!ELEMENT cmddtd (#PCDATA) >

 <!ELEMENT cmdtext (#PCDATA) >

 <!ELEMENT cmderr (mbr*)>

 <!ELEMENT MBR ((TYP, STYP, ((VSN, JOBNAME) | (rc, rsn))) | msg)>

Figure 30. CSLOMQRY Output (Part 1 of 2)

Appendix A. CSL Operations Manager XML Output 211

|
|
|
|

Descriptions of XML Tags Returned as CSL OM Response

Following are the descriptions of the possible XML tags returned as an OM

response. The tag names are delimited by the characters “<” and “>”. Data or other

sets of tags are contained between these start and end tags, respectively. In the list

of tags, indentation indicates that the tags are nested within the parent tags.

<?xml version ″1.0″?>

The version of XML used in this output.

<!DOCTYPE imsout SYSTEM ″imsout.dtd″>

The DOCTYPE tag identifies the file that contains the document type

definition (DTD). The DTD describes the structure that is supported for this

type of XML document. The imsout.dtd file can be accessed using the DB2

Universal Database Control Center. Users of z/OS can find the DTD

information in IMS.SDFSRESL(CSLOMDTD).

<imsout> </imsout>

The <imsout> </imsout> tags encapsulate the output from OM. These tags

are returned on every request.

<ctl> </ctl>

The <ctl> </ctl> tags encapsulate the control information returned by OM.

These tags are returned on every request. The control information consists

of the following:

 <!ELEMENT typ (#PCDATA) >

 <!ELEMENT styp (#PCDATA) >

 <!ELEMENT vsn (#PCDATA) >

 <!ELEMENT jobname (#PCDATA) >

 <!ELEMENT msg (#PCDATA) >

 <!ELEMENT cmdsecerr (exit, saf)>

 <!ELEMENT exit (rc, userdata) >

 <!ELEMENT saf (rc, racfc, racfrsn)>

 <!ELEMENT userdata (#PCDATA) >

 <!ELEMENT racfc (#PCDATA) >

 <!ELEMENT racfrsn (#PCDATA) >

 <!ELEMENT cmd (master?, userid?, verb, kwd, input)>

 <!ELEMENT master (#PCDATA) >

 <!ELEMENT userid (#PCDATA) >

 <!ELEMENT verb (#PCDATA) >

 <!ELEMENT kwd (#PCDATA) >

 <!ELEMENT input (#PCDATA) >

 <!ELEMENT cmdrsphdr (hdr*) >

 <!ELEMENT hdr (#PCDATA) >

 <!ELEMENT cmdrspdata (rsp*) >

 <!ELEMENT rsp (#PCDATA) >

 <!ELEMENT msgdata (mbr) >

 <!ATTLIST hdr slbl CDATA #REQUIRED >

 <!ATTLIST hdr llbl CDATA #REQUIRED >

 <!ATTLIST hdr scope CDATA #REQUIRED >

 <!ATTLIST hdr sort CDATA #REQUIRED >

 <!ATTLIST hdr key CDATA #REQUIRED >

 <!ATTLIST hdr scroll CDATA #REQUIRED >

 <!ATTLIST hdr len CDATA #REQUIRED >

 <!ATTLIST hdr dtype CDATA #REQUIRED >

 <!ATTLIST hdr align CDATA #REQUIRED >

</cmddtd>

<cmdtext> </cmdtext>

</imsout>

Figure 30. CSLOMQRY Output (Part 2 of 2)

212 Common Service Layer Guide and Reference

<omname>om name</omname>

Indicates the name of the OM that processed this request. The

name is specified on the OMNAME= execution parameter of the

CSLOIxxx PROCLIB member.

<omvsn>om version number</omvsn>

Indicates the OM version number.

<xmlvsn>xml version number</xmlvsn>

Indicates the XML version number.

<statime>starttime</statime>

Indicates the time that OM started processing the request. The field

is in the following format: yyyy.ddd hh:mm:ss.th

<stotime>stoptime</stotime>

Indicates the time that OM completed request processing. The field

is in the following format: yyyy.ddd hh:mm:ss.th

<staseq>startsequence</staseq>

Indicates the sequence value when OM started processing the

request. This value can be used for sorting. It is in printable

EBCDIC hexadecimal format.

<stoseq>stopsequence</stoseq>

Indicates the sequence value when OM stopped processing the

request. This value can be used for sorting. It is in printable

EBCDIC hexadecimal format.

<rqsttkn1>requesttoken1</rqsttkn1>

Indicates the user specified RQSTTKN1 value associated with the

response. OM converts unprintable characters to periods (.) in the

output.

<rqsttkn2>requesttoken2</rqsttkn2>

Indicates the user specified RQSTTKN2 value associated with the

response. OM converts unprintable characters to periods (.) in the

output.

<rc>returncode</rc>

The return code for the request in printable EBCDIC hexadecimal

format.

<rsn>reasoncode</rsn>

The reason code for the request in printable EBCDIC hexadecimal

format.

<cmdclients> </cmdclients>

The <cmdclients> </cmdclients> tags encapsulate information about OM

clients. These tags can be returned on a QUERY(CMDCLIENTS) request.

<mbr name=″membername″></mbr>

Indicates the name of the IMSplex member that is registered for

commands.

<typ>membertype</typ>

Indicates the type of IMSplex member.

<styp>membersubtype</styp>

Indicates the IMSplex member subtype. OM converts

unprintable characters to periods (.) in the output.

Appendix A. CSL Operations Manager XML Output 213

|
|
|

|

<vsn>memberversion</vsn>

Indicates the member version number.

<jobname>memberjobname</jobname>

Indicates the member jobname.

<cmddtd> </cmddtd>

The <cmddtd> </cmddtd> tags encapsulate the Document Type Definition

(DTD) defined by OM for command syntax and OM output XML. These tags

can be returned on a QUERY(CMDSYNTAX) request.

<cmdsyntax> </cmdsyntax>

The <cmdsyntax> </cmdsyntax> tags encapsulate the XML definitions for

the commands that are registered to OM from all of its clients. These tags

can be returned on a QUERY(CMDSYNTAX) request.

<cmdtext> </cmdtext>

The <cmdtext> </cmdtext> tags encapsulate the translatable text strings

associated with the XML command syntax tags. These tags can be returned

on a QUERY(CMDSYNTAX) request.

<cmd> </cmd>

The <cmd> </cmd> tags encapsulate the command information that was

passed to OM. These tags can be returned on a command request. The

output returned in these tags is what was provided on the CMD= parameter

on the CSLOMBLD macro. The following tags are included within the

<cmd> tags:

<master> </master>

The <master> </master> tags encapsulate the name of the

command processing client that was tagged as the master when

sending the command. This information will not be present unless

the command was successfully sent to at least one command

processing client.

<userid> </userid>

The <userid> </userid> tags encapsulate the user ID of the

originator of the command.

<verb> </verb>

The <verb> </verb> tags encapsulate the short form of the

command verb that was processed by OM. The verb might have

been passed to OM in a long form.

<kwd> </kwd>

The <kwd> </kwd> tags encapsulate the command keyword that

was processed by OM.

<input> </input>

The <input> </input> tags encapsulate the actual input command

string that was passed to OM.

<cmdrsphdr> </cmdrsphdr>

The <cmdrsphdr> </cmdrsphdr> tags encapsulate the command header

information which describes the data fields returned in the command

response. These tags can be returned on a command request.

 <hdr ... />

Defines the attributes of columns of data fields.

214 Common Service Layer Guide and Reference

|

The command header information is in the format shown in

Figure 31:

slbl Short label used to match data description with data values

returned by <cmdrspdata>.

 The short label values vary by command. Refer to the

documentation for each command to determine what values

can be returned for a specific command.

llbl Long label which can be used as the table column header.

 The long label values vary by command. Refer to the

documentation for each command to determine what values

can be returned for a specific command.

scope Indicates if the data is global or local.

GBL Indicates that the data is global. For query output,

global data applies to all resources of the same

name, but is only returned once in the command

response for a specific resource name. Global

information applies to other rows of the same

resource name for different IMSplex member

names. The resource name is the data field

identified by a KEY=″1″ attribute. If an application

chooses to transform the command response data

into a table to be displayed for a user, the global

data value can be propagated to other rows for the

same resource name.

LCL Indicates that the data is local. For query output,

local data applies only to a specific resource name

in a specific IMS. Different IMS systems can return

different values for local data fields. Each IMS

returns its local value when it is available. If an

application chooses to transform the command

response data into a table to be displayed for a

user, the local data value should not be propagated

to other rows for the same resource name.

sort Indicates whether or not this field should be sorted and the

sort direction.

A Sort in ascending order.

D Sort in descending order.

N Do not sort field.

key Indicates the sort priority for this field.

0 Field is not sorted.

1 The highest priority sort field.

2 The second highest priority sort field.

n The nth priority sort field.

<hdr slbl="ss" llbl="llll" scope="c" sort="d" key="e" scroll="f" len="g" dtype="h" align="i" skipb="no"/>

Figure 31. Command Response Header Format

Appendix A. CSL Operations Manager XML Output 215

|

The priority value indicated on KEY= in the <cmdrsphdr> tag

has been predetermined. Some command responses can

specify multiple sort fields. In Figure 33 on page 217,

several fields are listed within the <cmdrsphdr> tags with

their sort priorities:

v Trancode - 1

v MbrName - 4

v CC - 0

v PSBname - 0

v QCnt - 2

v LCls - 0

v LQCnt - 3

 Figure 33 on page 217 shows that only Trancode,

MbrName, QCnt, and LQcnt will be used to sort the

command results. The sort priority, therefore, will be:

1. Trancode

2. Qcnt

3. LQcnt

4. MbrName

If two records have the same Trancode, they will be sorted

by Qcnt. If they also have the same Qcnt, they are sorted

by LQcnt. If they have the same LQcnt value, they are

sorted by MbrName, and so on, until the nth sort field is

used.

 The results of the XML in Figure 33 on page 217 are

displayed in Figure 32.

 Depending on which fields were selected using the SHOW

parameter of the QUERY command, not all intermediate

priority value fields will be displayed. That is, the results

could display fields whose priority values were set at 1 and

4, but not display fields whose priority values were set at 2

and 3. A program might leave the records in the original

order, sort them using the predetermined priority values, or

sort by other fields using criteria set locally by the user.

Response for: QRY TRAN NAME(ADD*) SHOW(PSB,QCNT,CLASS)

Trancode MbrName CC PSBname QCnt LCls LQCnt

ADDINV IMS2 0 0

ADDINV SYS3 0 DFSSAM04 4 3

ADDINV IMS2 0 DFSSAM04 4 0

ADDPART IMS2 0 0

ADDPART IMS2 0 DFSSAM04 4 0

ADDPART SYS3 0 DFSSAM04 4 0

Figure 32. Sorted Results

216 Common Service Layer Guide and Reference

scroll Indicates whether or not this field should be scrolled off of

the screen when TSO SPOC shifts the screen to the right.

NO Do not scroll field.

YES Allow field to scroll off the screen.

len Maximum length of data (data returned could contain fewer

characters). If a table of data is being created from the

output response, this value can be used to determine the

width of the column that is displayed for this attribute. If the

value for this field is ’*’, this is a variable length field.

dtype Describes the original data type. All data is returned in

<?xml version="1.0"?>

<!DOCTYPE imsout SYSTEM "imsout.dtd">

<imsout>

<ctl>

<omname>OM1OM </omname>

<omvsn>1.1.0</omvsn>

<xmlvsn>1 </xmlvsn>

<statime>2002.261 18:33:56.425140</statime>

<stotime>2002.261 18:33:56.487941</stotime>

<staseq>B8400987409B4A0E</staseq>

<stoseq>B84009874FF05409</stoseq>

<rqsttkn1>USRT002 10113356</rqsttkn1>

<rc>00000000</rc>

<rsn>00000000</rsn>

</ctl>

<cmd>

<master>IMS2 </master>

<userid>USRT002 </userid>

<verb>QRY </verb>

<kwd>TRAN </kwd>

<input>QRY TRAN NAME(ADD*) SHOW(PSB,QCNT,CLASS) </input>

</cmd>

<cmdrsphdr>

<hdr slbl="TRAN" llbl="Trancode" scope="LCL" sort="a" key="1"

scroll="no" len="8" dtype="CHAR" align="left" />

<hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a" key="4"

scroll="no" len="8" dtype="CHAR" align="left" />

<hdr slbl="CC" llbl="CC" scope="LCL" sort="n" key="0"

scroll="yes" len="4" dtype="INT" align="right" />

<hdr slbl="PSB" llbl="PSBname" scope="LCL" sort="n" key="0"

scroll="yes" len="8" dtype="CHAR" align="left" />

<hdr slbl="Q" llbl="QCnt" scope="GBL" sort="d" key="2"

scroll="yes" len="8" dtype="INT" align="right" />

<hdr slbl="LCLS" llbl="LCls" scope="LCL" sort="n" key="0"

scroll="yes" len="3" dtype="INT" align="right" />

<hdr slbl="LQ" llbl="LQCnt" scope="LCL" sort="d" key="3"

scroll="yes" len="8" dtype="INT" align="right" /></cmdrsphdr>

<cmdrspdata>

<rsp>TRAN(ADDPART) MBR(IMS2) CC(0) PSB(DFSSAM04) LCLS(4)

LQ(0) </rsp>

<rsp>TRAN(ADDINV) MBR(IMS2) CC(0) PSB(DFSSAM04) LCLS(4)

LQ(0) </rsp>

<rsp>TRAN(ADDPART) MBR(IMS2) CC(0) Q(0) </rsp>

<rsp>TRAN(ADDINV) MBR(IMS2) CC(0) Q(0) </rsp>

<rsp>TRAN(ADDPART) MBR(SYS3) CC(0) PSB(DFSSAM04) LCLS(4)

LQ(0) </rsp>

<rsp>TRAN(ADDINV) MBR(SYS3) CC(0) PSB(DFSSAM04) LCLS(4)

LQ(3) </rsp>

</cmdrspdata>

</imsout>

Figure 33. Sample XML to Illustrate KEY=

Appendix A. CSL Operations Manager XML Output 217

character format. However, some fields represent numeric

data. Data that originated as integer might need to be

converted from character to integer in order to perform

mathematical calculations.

CHAR The output field represents character data.

INT The output field is the character representation of

integer data.

align Indicates recommended column alignment if data is to be

formatted into columns.

RIGHT

Data is right aligned, for example, numeric data

CENTER

Data is centered

LEFT Data is left aligned, for example, character data

skipb

no The column is displayed on the TSO SPOC output,

even if no client returned any information for this

column. This is the default.

yes The column is not displayed on the TSO SPOC

output if no client returned any information for this

column.

<cmdrspdata> </cmdrspdata>

The <cmdrspdata> </cmdrspdata> tags encapsulate the command

response detail information. These tags can be returned on a command

request. The <cmdrspdata> </cmdrspdata> tags contain the actual data that

is described by the <cmdrsphdr> </cmdrsphdr> tags.

 Refer to the documentation for each command to determine what values

can be returned for a specific command.

<rsp>response data</rsp>

 Contains a logical line of command response output for a particular

resource. The response data contains various tags in the form

name(value). The name maps to short label (slbl=) values in the

<hdr> tag. This is shown in Figure 34, with the values TRAN and

PSB.

 The <hdr> tag includes a long label value (llbl=), which can be used

as column headings. This is shown in Figure 35 on page 219,

specifically Trancode and PSBname.

<cmdrsphdr>

<hdr slbl="TRAN" llbl="Trancode"... />

<hdr slbl="PSB" llbl="PSBname" ... />

</cmdrsphdr>

<cmdrspdata>

<rsp>TRAN(A) PSB(A11) </rsp>

<rsp>TRAN(B) PSB(B22) </rsp>

<rsp>TRAN(C) PSB(C33) </rsp>

</cmdrspdata>

Figure 34. <cmdrsphdr> Sample Tags

218 Common Service Layer Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|

|

||
|
|

||
|
|

|
|
|
|
|

|

|
|
|

The values included in the response data propagate the data

columns of the SPOC output. Other tags in the <hdr> tag describe

formatting attributes for values in that column.

<msgdata> </msgdata>

The <msgdata> </msgdata> tags encapsulate prebuilt IMS messages. The

messages can be of any type including informational, warning, or error

messages. These tags can be returned on a command request.

<mbr name=″membername″></mbr>

Indicates the name of the IMSplex member that returned the

message.

<msg>message data</msg>

Contains a logical command response output for a resource

in a message format. The message starts with a message

number (for example,DFSnnnnI). There is no LL field or

X'15' new line character.

<cmderr> </cmderr>

The <cmderr> </cmderr> tags encapsulate the return and reason code

information returned by OM or a command processing client. These tags

are returned on command requests when an error specific to a command

processing client must be returned. For each IMSplex member with an error

the following information is returned.

<mbr name=″membername″></mbr>

Indicates the name of the IMSplex member for which an error was

detected.

<typ>membertype</typ>

Indicates the type of IMSplex member.

<styp>membersubtype</styp>

Indicates the IMSplex member subtype. OM converts

unprintable characters to periods (.) in the output.

<rc>returncode</rc>

Indicates the return code for the IMSplex member in

printable EBCDIC hexadecimal format.

<rsn>reasoncode</rsn>

Indicates the reason code for the IMSplex member in

printable EBCDIC hexadecimal format.

<cmdsecerr> </cmdsecerr>

The <cmdsecerr> </cmdsecerr> tags encapsulate the return and reason

code information returned by the OM SECURITY exit, SAF and RACF, or

equivalent. If the OM SECURITY exit rejected the command for any reason,

the user data from the SECURITY exit is also encapsulated here.

<exit> </exit>

Encapsulates the return code and user data from the OM

SECURITY exit.

Trancode PSBname

A A11

B B22

C C33

Figure 35. SPOC Output from <cmdrsphdr>

Appendix A. CSL Operations Manager XML Output 219

|
|
|
|
|
|
|

|

|
|
|

<rc>returncode</rc>

Indicates the return code from the OM SECURITY exit in

printable EBCDIC hexadecimal format.

<userdata>userdata</userdata>

Indicates the user data returned from the OM SECURITY

exit in the OSCX_USERDATA field of the OM Command

Security User Exit parameter list (CSLOSCX). OM converts

unprintable characters to periods (.) in the output.

<saf> </saf>

Encapsulates the return and reason codes from the SAF and RACF

or equivalent.

<rc>returncode</rc>

Indicates the return code from the SAF in printable EBCDIC

hexadecimal format.

<racfrc>racfreturncode</racfrc>

Indicates the return code from RACF or equivalent in

printable EBCDIC hexadecimal format.

<racfrsn>racfreasoncode</racfrsn>

Indicates the reason code from RACF or equivalent in

printable EBCDIC hexadecimal format.

220 Common Service Layer Guide and Reference

Appendix B. REXX SPOC API and the CSL

The REXX SPOC API is described in the following topics:

v “Using the REXX SPOC API Environment with the CSL OM”

v “REXX SPOC Return and Reason Codes” on page 223

v “REXX Samples and Examples” on page 224

Using the REXX SPOC API Environment with the CSL OM

The REXX SPOC API allows REXX programs to submit commands to OM and to

retrieve the command responses. There are 3 phases related to the REXX SPOC

API:

1. Set up the REXX environment

2. Set up the IMSplex environment and issue commands

3. Retrieve the command responses

Each of these phases is described in this topic.

Setting Up the REXX Environment in a CSL

To set up the REXX environment, call program CSLULXSB using the ADDRESS

command. This program establishes the REXX subcommand environment for the

REXX SPOC API.

�� ADDRESS LINK ’CSLULXSB’ ��

Note: Other forms of the ADDRESS command might not work in the Tivoli NetView

for z/OS environment.

Setting Up the IMSplex Environment

After setting up the REXX environment using CSLULXSB, you can set up the

IMSplex environment. To set up the IMSplex environment and begin to issue

commands, switch the default host command to IMSSPOC using the address

command.

�� ADDRESS IMSSPOC ��

After you set the default host command to IMSSPOC, IMSSPOC executes

subsequent host commands issued by the REXX program that is running. You can

switch to other host commands by using the ADDRESS command with other hosts.

For example:

ADDRESS TSO

ADDRESS MVS

ADDRESS ISPEXEC

You can then issue commands specific to those environments.

Note: If you issue commands other than the subcommands described here in the

REXX environment, they are sent to OM for processing.

© Copyright IBM Corp. 2002, 2005 221

|
|
|

IMS Subcommand

The IMS subcommand establishes the name of the IMSplex. You must issue the

IMS subcommand to establish the IMSplex name before any other commands can

be issued. A prefix of “CSL” is automatically added to the name that you specify.

�� IMS IMSplex_name ��

ROUTE Subcommand

Use the ROUTE subcommand to set the name of the command processors. The

command processors are the specific systems that will execute subsequent IMS

commands. If you do not specify a command processor:

v the previous routing value is removed

v commands will be routed to all members of the IMSplex (this is the default).

The ROUTE subcommand is optional.

��

ROUTE

�

 ,

command_processor

��

CART Subcommand

Use the Command and Response Token (CART) subcommand to set the name of

the command and response token. This 16-character text string token is used to

retrieve the command response.

You must issue the CART subcommand before you can issue any IMS commands.

�� CART token_name ��

WAIT Subcommand

Use the WAIT subcommand to provide a timeout value to OM. The time value must

be in the form MMM:SS or ssss. The maximum value you can specify is 999:59.

The WAIT subcommand is optional

�� WAIT time_value ��

Issuing Type-2 IMS Commands

You issue IMS commands, including type-2 commands, by including them in the

REXX program stream as quoted strings or as REXX variables that resolve to

quoted strings. Examples of commands are shown in Figure 36.

"QUERY IMPLEX SHOW(ALL)"

"DIS ACT"

tranlist = "PETER1,MATT1"

"QUERY TRAN NAME("tranlist")"

Figure 36. Examples of type-2 commands

222 Common Service Layer Guide and Reference

|
|
|

|

|

|

||||||||||||||||||||

|

|

Retrieving Command Responses

Use CSLULGTS to retrieve command responses. CSLULGTS puts the command

responses to a stem variable so that REXX can access them.

�� CSLULGTS (stem_name,token_name,”wait_time”) ��

stem_name

After the CSLULGTS completes successfully, the stem variable contains XML

statements. Each row of the stem variable contains one XML statement. If the

beginning and ending XML tags are adjacent (that is, no other XML tags exist

between them), they are placed in the same row of the stem variable. A single

row of a stem variable might look like this:

<rsp>TRAN(VIDB) MBR (IMS2) CC(0) </rsp>

token_name

token_name is the name of the command and response token (CART). It

should match the name specified on the CART subcommand.

wait_time

wait_time is a time out value for CSLULGTS. CSLULGTS waits until the

command completes, but the wait lasts only as long as the time specified. The

wait time is in the format MMM:SS, or ssss. The maximum time out value is

999:59. Enclose this value in quotes.

Note: This time out value is not the same as the time out value for the WAIT

subcommand; however, this wait_time should be at least as long as the

value specified on the WAIT subcommand. Otherwise, no command

response will be received for long running commands.

If no response was received the first time, CSLULGTS can be issued again.

Ending the IMSSPOC Environment

You can end the IMSSPOC environment when you no longer want to execute IMS

commands. Use the END subcommand to signify that the SPOC environment is no

longer needed. After the END subcommand is issued, the control blocks associated

with the SPOC environment are freed.

Note: END is a valid IMS command. If END is specified with no operands, it is

treated as an IMS SPOC subcommand. If END is specified with parameters,

it is sent to the IMSplex for processing as an IMS command.

�� END ��

REXX SPOC Return and Reason Codes

Return and reason codes issued from the REXX SPOC are described in Table 77

on page 224. Note that the return and reason codes are character values, not

hexadecimal values. The X at the end of the code is for easier reading. Also

included is the meaning of a reason code (that is, what possibly caused it).

IMSSPOC commands, IMS commands, and the CSLULGTS command can set

special variables. These variables are IMSRC and IMSREASON. Refer to those

variables if the standard REXX return code is non-zero.

Appendix B. REXX SPOC API and the CSL 223

Table 77. REXX SPOC Return and Reason Codes

Return Code Reason Code Meaning

0000000X The request completed successfully.

08000004X 00001000X The command is still executing.

08000008X 00002000X The wait value was missing or invalid.

00002008X The IMSplex value was missing or invalid.

00002012X The STEM name was missing or invalid.

00002016X The token name was missing or invalid.

00002020X Too many parameters were specified.

00002024X The request token could not be found.

00002028X The CART value was missing or invalid.

08000010X An environmental error occurred.

08000014X 00004000X A GETMAIN failure occurred.

REXX Samples and Examples

This topic provides both sample programs and examples for REXX SPOC

environments.

Sample REXX Program

A sample REXX program is provided in Figure 37 on page 225.

224 Common Service Layer Guide and Reference

REXX Batch Job Example

This topic provides a sample batch job, REXX program, and job output.

The batch job shown in Figure 38 on page 226 calls the batch TSO command

processor.

Address LINK ’CSLULXSB’

 Address IMSSPOC

 /*---

 | ’ims’ defines the IMSplex that receives the commands |

 | |

 | ’route’ defines which IMSplex members in the IMSplex |

 | receives the commands. If ROUTE is not specified or if |

 | ROUTE * is specified, commands are routed to all IMSplex |

 | members. |

 | |

 | ’wait’ provides a timeout value to OM. The time is in |

 | mmm:ss format (or ssss if no colon is specified). |

 | |

 | ’cart’ establishes the command response token for subsequent |

 | commands. |

 | |

 | ’end’ frees control blocks |

 | |

 --*/

 "IMS IPLX4"

 "ROUTE IMS1,IMSB"

 "WAIT 5:00"

 "CART DISTRAN"

 "/DIS TRAN PART"

 /*---

 | The cslulgts function retrieves data associated with a |

 | a specific token and fills in a REXX stem variable. In |

 | this example, it waits 59 seconds. |

 | |

 | The XML statements returned are put in the stem variable |

 | specified by the user. |

 | |

 --*/

 spoc_rc = cslulgts(’DISINFO.’,’DISTRAN’,"59")

 do z1 = 1 to DISINFO.0

 /* display each line of XML information */

 Say disinfo.z1

 end

 "END"

Figure 37. Sample REXX Program

Appendix B. REXX SPOC API and the CSL 225

The DD names in this batch job include:

STEPLIB

Contains the load modules.

SYSPROC

Contains the REXX programs.

SYSTSPRT

Contains the output produced by the REXX program.

SYSTSIN

Contains the command to execute, including its parameters.

The QRY TRAN command in the JCL is passed as an argument to the sample

REXX program. The command is issued, and the response is sent to the

SYSTSPRT file.

Figure 39 shows the sample REXX program, REXXSPOC.

 //REXXSPOC JOB ,

 // MSGCLASS=H,NOTIFY=USRT002,USER=USRT002,TIME=(,30)

 //*

 //SPOC EXEC PGM=IKJEFT01,DYNAMNBR=45

 //STEPLIB DD DISP=SHR,DSN=IMS810.SDFSRESL

 //SYSPROC DD DISP=SHR,DSN=LOCAL.IMS.CLIST

 //SYSTSPRT DD SYSOUT=A

 //SYSTSIN DD *

 %REXXSPOC QRY TRAN NAME(V*)

 /*EOF

Figure 38. Sample batch job

/* rexx */

parse upper arg theIMScmd

Address LINK ’CSLULXSB’

if rc = 0 then

 do

 Address IMSSPOC

 "IMS plex1" ; if rc > 0 then say ’rc=’imsrc ’reason=’imsreason

 "route ims2"; if rc > 0 then say ’rc=’imsrc ’reason=’imsreason

 cartid = "TEST13"

 "cart" cartid ; if rc > 0 then say ’rc=’imsrc ’reason=’imsreason

 "WAIT 1:00" ; if rc > 0 then say ’rc=’imsrc ’reason=’imsreason

 theIMScmd

 if rc > 0 then say ’rc=’rc ’imsrc=’imsrc ’reason=’imsreason

 do

 results = cslulgts(’TEMP.’, cartid,"1:30")

 say ’results=’results ’ imsrc=’imsrc ’ reason=’imsreason

 if temp.0 /= ’’ then

 do

 say ’temp.’0’=(’temp.0’)’

 do idx = 1 to temp.0

 say ’temp.’idx’= ’temp.idx

 end

 end

 end

"END"

End

exit

Figure 39. REXXSPOC sample program

226 Common Service Layer Guide and Reference

The output from the REXXSPOC sample program is shown in Figure 40.

Autonomic Computing Examples

In this topic, two examples are provided that illustrate autonomic computing

capabilities associated with the REXX SPOC API. Autonomic indicates that the

code is responsive and can take certain actions to correct what it determines to be

incorrect.

Autonomic Example 1

In Figure 41 on page 228, a transaction is queried. If the transaction is stopped, the

REXX SPOC API attempts to start it. The REXX SPOC API examines the

information returned by CSLULGTS, looking specifically for the line that refers to

the transaction of interest.

READY

%REXXSPOC QRY TRAN NAME(V*)

results=00000000X imsrc=00000000X reason=00000000X

temp.0=(30)

temp.1= <imsout>

temp.2= <ctl>

temp.3= <omname>OM1OM </omname>

temp.4= <omvsn>1.1.0</omvsn>

temp.5= <xmlvsn>1 </xmlvsn>

temp.6= <statime>2001.198 16:08:39.944953</statime>

temp.7= <stotime>2001.198 16:08:40.271944</stotime>

temp.8= <staseq>B625CACD49AF914A</staseq>

temp.9= <stoseq>B625CACD99848CC6</stoseq>

temp.10= <rqsttkn1>TEST13 </rqsttkn1>

temp.11= <rc>00000000</rc>

temp.12= <rsn>00000000</rsn>

temp.13= </ctl>

temp.14= <cmd>

temp.15= <master>IMS2 </master>

temp.16= <userid>USRT002 </userid>

temp.17= <verb>QRY </verb>

temp.18= <kwd>TRAN </kwd>

temp.19= <input>QRY TRAN NAME(V*)</input>

temp.20= </cmd>

temp.21= <cmdrsphdr>

temp.22= <hdr slbl="TRAN" llbl="Trancode" scope="LCL" sort="a"

key="1" scroll="no" len="8" dtype=" CHAR" align="left" />

temp.23= <hdr slbl="MBR" llbl="MbrName" scope="LCL" sort="a"

key="4" scroll="no" len="8" dtype="CHAR" align="left" />

temp.24= <hdr slbl="CC" llbl="CC" scope="LCL" sort="n"

key="0" scroll="yes" len="4" dtype="INT" align="right" />

temp.26= </cmdrsphdr>

temp.26= <cmdrspdata>

temp.27= <rsp>TRAN(VIDB) MBR(IMS2) CC(0) </rsp>

temp.28= <rsp>TRAN(VIDA) MBR(IMS2) CC(0) </rsp>

temp.29= </cmdrspdata>

temp.30= </imsout>

READY

END

Figure 40. Sample Output

Appendix B. REXX SPOC API and the CSL 227

|

|
|
|
|

|
|
|
|
|

|

Autonomic Example 2

In Figure 42, the QUERY command is used to determine the queue count (qcnt) of

a transaction. A qcnt with a value greater than 5 is considered a problem. The

REXX SPOC API attempts to resolve the problem by starting another region and

changing the transaction to a different class.

/* autonomic computing example 1 */

"CART qrytran12"

"qry tran name(CDEBTRN3) show(status)"

results = cslulgts("resp.","qrytran12","3:15")

Do idx = 1 to resp.0

 /* find which IMS and the status of tran */

 parse var resp.idx . "TRAN(CDEBTRN3" . ,

 "MBR(" imsname ")" . ,

 "LSTT(" status ")" .

 /* if tran is stoppped, try to start it */

 If pos(’STOSCHD’, status) > 0 Then

 Do

 /* send command to IMS that needs to restart tran */

 "ROUTE" imsname

 "UPD TRAN NAME(CDEBTRN3) START(SCHD)"

 End

End

Figure 41. Autonomic Example 1

/* autonomic computing example 2 */

"CART qrytran13"

"qry tran name(sks1) show(qcnt)"

results = cslulgts("resp.", "qrytran13", "3:15")

Do idx = 1 to resp.0

 parse var resp.idx . "TRAN(SKS1" . "Q(" count ")" .

 If count ¬= ’’ &,

 count > 5 Then

 Do

 "CART strtrgn05"

 "START REGION IMSRG5"

 start? = cslulgts("strt.", "strtrgn05", "10:00")

 if imsrc = ’00000000X’ then

 Do

 "CART updtran14"

 "update tran name(SKS1) set(class(5))"

 End

 End

End

"END"

Figure 42. Autonomic Example 2

228 Common Service Layer Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

Notices

This information was developed for products and services offered in the U.S.A. IBM

may not offer the products, services, or features discussed in this document in other

countries. Consult your local IBM representative for information on the products and

services currently available in your area. Any reference to an IBM product, program,

or service is not intended to state or imply that only that IBM product, program, or

service may be used. Any functionally equivalent product, program, or service that

does not infringe any IBM intellectual property right may be used instead. However,

it is the user’s responsibility to evaluate and verify the operation of any non-IBM

product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 2002, 2005 229

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those

products, their published announcements or other publicly available sources. IBM

has not tested those products and cannot confirm the accuracy of performance,

compatibility or any other claims related to non-IBM products. Questions on the

capabilities of non-IBM products should be addressed to the suppliers of those

products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to IBM,

for the purposes of developing, using, marketing or distributing application programs

conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,

serviceability, or function of these programs. You may copy, modify, and distribute

these sample programs in any form without payment to IBM for the purposes of

developing, using, marketing, or distributing application programs conforming to

IBM’s application programming interfaces.

230 Common Service Layer Guide and Reference

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information softcopy, the photographs and color illustrations

may not appear.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

BookManager

CICS

DataPropagator

DB2

DB2 Universal Database

IBM

IMS

MVS

NetView

OS/390

QMF

RACF

Tivoli

WebSphere

z/OS

 Java and all Java-based trademarks and logos are trademarks of Sun

Microsystems, Inc., in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, and service names may be trademarks or service marks

of others.

Notices 231

232 Common Service Layer Guide and Reference

Bibliography

This bibliography lists all of the information in the

IMS Version 9 library.

v z/OS MVS: Initialization and Tuning Guide,

SA22-7592

v z/OS MVS: Setting Up a Sysplex, SA22-7625

IMS Version 9 Library

 Title Acronym Order

number

IMS Version 9: Administration

Guide: Database Manager

ADB SC18-7806

IMS Version 9: Administration

Guide: System

AS SC18-7807

IMS Version 9: Administration

Guide: Transaction Manager

ATM SC18-7808

IMS Version 9: Application

Programming: Database

Manager

APDB SC18-7809

IMS Version 9: Application

Programming: Design Guide

APDG SC18-7810

IMS Version 9: Application

Programming: EXEC DLI

Commands for CICS and

IMS

APCICS SC18-7811

IMS Version 9: Application

Programming: Transaction

Manager

APTM SC18-7812

IMS Version 9: Base Primitive

Environment Guide and

Reference

BPE SC18-7813

IMS Version 9: Command

Reference

CR SC18-7814

IMS Version 9: Common

Queue Server Guide and

Reference

CQS SC18-7815

IMS Version 9: Common

Service Layer Guide and

Reference

CSL SC18-7816

IMS Version 9: Customization

Guide

CG SC18-7817

IMS Version 9: Database

Recovery Control (DBRC)

Guide and Reference

DBRC SC18-7818

IMS Version 9: Diagnosis

Guide and Reference

DGR LY37-3203

IMS Version 9: Failure

Analysis Structure Tables

(FAST) for Dump Analysis

FAST LY37-3204

IMS Version 9: IMS Connect

Guide and Reference

CT SC18-9287

IMS Version 9: IMS Java

Guide and Reference

JGR SC18-7821

Title Acronym Order

number

IMS Version 9: Installation

Volume 1: Installation

Verification

IIV GC18-7822

IMS Version 9: Installation

Volume 2: System Definition

and Tailoring

ISDT GC18-7823

IMS Version 9: Master Index

and Glossary

MIG SC18-7826

IMS Version 9: Messages

and Codes, Volume 1

MC1 GC18-7827

IMS Version 9: Messages

and Codes, Volume 2

MC2 GC18-7828

IMS Version 9: Open

Transaction Manager Access

Guide and Reference

OTMA SC18-7829

IMS Version 9: Operations

Guide

OG SC18-7830

IMS Version 9: Release

Planning Guide

RPG GC17-7831

IMS Version 9: Summary of

Operator Commands

SOC SC18-7832

IMS Version 9: Utilities

Reference: Database and

Transaction Manager

URDBTM SC18-7833

IMS Version 9: Utilities

Reference: System

URS SC18-7834

Supplementary Publications

 Title Order number

IMS Connector for Java 2.2.2 and

9.1.0.1 Online Documentation for

WebSphere Studio Application

Developer Integration Edition 5.1.1

SC09-7869

IMS Version 9 Fact Sheet GC18-7697

IMS Version 9: Licensed Program

Specifications

GC18-7825

Publication Collections

 Title Format Order

number

IMS Version 9 Softcopy Library CD LK3T-7213

IMS Favorites CD LK3T-7144

Licensed Bill of Forms (LBOF):

IMS Version 9 Hardcopy and

Softcopy Library

Hardcopy

and CD

LBOF-7789

Unlicensed Bill of Forms

(SBOF): IMS Version 9

Unlicensed Hardcopy Library

Hardcopy SBOF-7790

© Copyright IBM Corp. 2002, 2005 233

Title Format Order

number

OS/390 Collection CD SK2T-6700

z/OS Software Products

Collection

CD SK3T-4270

z/OS and Software Products

DVD Collection

DVD SK3T-4271

Accessibility Titles Cited in This

Library

 Title Order number

z/OS V1R1.0 TSO Primer SA22-7787

z/OS V1R5.0 TSO/E User’s Guide SA22-7794

z/OS V1R5.0 ISPF User’s Guide,

Volume 1

SC34-4822

234 Common Service Layer Guide and Reference

Index

Special characters
(Structured Call Interface (SCI)

environmental requirements 19

A
ACBLIB 16

AOP clients 91

application programming interface, OM 3

ARM
See Automatic Restart Manager

authorization level 21

authorized clients
environmental requirements 19

automated operator program clients 91

automated operator program requests 55

automated procedures
single point of control 6

supported consoles 6

Automatic Restart Manager
element name 29

enabling 29

using 29

autonomic computing 227

B
Base Primitive Environment (BPE)

commands in CSL 24

configuration PROCLIB member 15

procedures for CSL 15

relationship to CSL 1

RM exit routines 105

user exit PROCLIB member 15

BPE (Base Primitive Environment)
commands in CSL 24

configuration PROCLIB member 15

procedures for CSL 15

relationship to CSL 1

user exit PROCLIB member 15

BPEINI00 13

buffer return request 172

C
CART 222

clean up process 113

client
AOP 91

command processing 91

planning considerations 21

registering an OM client 22

registering an RM client 23

running on host 91

TSO SPOC 91

workstation 92

workstation SPOC 91

client (continued)
writing for CSL 21

writing your own 22

client requests 55

command and response token 222

command deregistration request 81

command directive 94

command header
XML output 215

command override 81

command processing client requests 78

command processing clients
registering 37

command response directive 96

command response request 88

command security 39

commands
ADDRESS 221

BPE 24

CSLULGTS 223

issuing to the IMSplex 23

Modify 28

not issued directly to OM 24

processing considerations in a CSL 38

REXX subcommands 221

CART 222

END 223

IMS 222

ROUTE 222

WAIT 222

routing 38

SHUTDOWN CSLPLEX 29

type-2 1

z/OS syntax 28

Common Queue Server (CQS)
address space 2

procedures for CSL 14

Common Service Layer (CSL)
and CQS 13

benefits 1

command processing considerations 38

communication 149

configuration recommendation 8

configurations 7

configured without Resource Manager 3

DFSCGxxx PROCLIB 14

how to write requests 16

IMS address spaces included 2

introduction 1

minimum configuration 8

Operations Manager
overview 3, 31

PROCLIB members 14

relationship to Base Primitive Environment 1

Resource Manager
function provided 4

overview 4

resource structure 4

© Copyright IBM Corp. 2002, 2005 235

Common Service Layer (CSL) (continued)
Resource Manager (continued)

startup procedure 99

shutting down 26

Structured Call Interface
definition and tailoring 149

functions provided 4

overview 4, 149

startup procedure 149

system definition and tailoring 13

configurations
IMSplex DBCTL 11

IMSplex single system 12

IMSplex with multiple SPOC users 6

minimum 8

mixed IMS versions 10

recommendations 8

shared queues with a CSL 11

shared queues without a CSL 11

simple 3

typical IMSplex 7

without Resource Manager 11

coordinating IMSplex-wide processes 112

CQS (Common Queue Server)
address space 2

procedures for CSL 14

CQSINIT 13

CQSIPxxx 14

CSL (Common Service Layer)
and CQS 13

benefits 1

configuration recommendation 8

configurations 7

configured without Resource Manager 3

DFSCGxxx PROCLIB 14

how to write requests 16

IMS address spaces included 2

introduction 1

minimum configuration 8

Operations Manager
overview 3

PROCLIB members 14

relationship to Base Primitive Environment 1

Resource Manager
function provided 4

overview 4

resource structure 4

shutting down 26

Structured Call Interface
functions provided 4

overview 4

system definition and tailoring 13

CSLOIxxx 35

sample PROCLIB member 37

CSLOMBLD 79

CSLOMBLD command override 81

CSLOMCMD 55

CSLOMCMD output 209

CSLOMI
input buffer, example 65

output 205

CSLOMI (continued)
response directive 96

CSLOMOUT 82

CSLOMQRY 74

CSLOMQRY output 210

CSLOMRSP 88

CSLOREGO 87, 88

CSLRIxxx 101

CSLRMDEL 113

CSLRMDRG 117

CSLRMPRI 118

CSLRMPRR 121

CSLRMPRS 123

CSLRMQRY 131

CSLRMREG 136

CSLRMUPD 140

CSLRST1 110

CSLRST2 111

CSLSCBFR 19, 172

CSLSCDRG 174

environmental requirements 19

CSLSCMSG 175

CSLSCQRY 182

CSLSCQSC 185

CSLSCREG 188

environmental requirements 19

planning considerations 22

restrictions 188

CSLSCRQR 194

CSLSCRQS 197

CSLSIxxx 152

CSLULGTS 223

CSLULXCB 221

CSLZQRY request
description 24

parameters 24

syntax 24

CSLZSHUT request
description 26

parameters 27

syntax 27

D
data set

MODSTAT 16

OLCSTAT 16

SYS1.PARMLIB 13

DBBBATCH 2

definition and tailoring
Structured Call Interface 149

deleting resources 113

deregistering clients 117

DFSCGxxx 14

DFSDCxxx 14

DFSPBxxx 14

DFSVSMxxx 14

directives
OM 94

RM 145

process step 146

236 Common Service Layer Guide and Reference

directives (continued)
RM (continued)

process step response 148

repopulate structure 145

structure failed 146

DLIBATCH 2

E
E-MCS 7

ECB 16

element names, ARM 29

environmental requirements 19

examples
REXX SPOC API

autonomic 227

exit routines
Resource Manager

client connection 105

initialization/termination 107

RM statistics 108

Structured Call Interface
input 163

F
facility class 155

failures with Resource Manager 113

FMTLIB 16

G
global online change

ACBLIB 16

and RM services 11

enabling 16

FMTLIB 16

libraries 16

MODBLKS 16

overview 15

Resource Manager’s role 16

resources supported 16

global resource information 98

macros 112

maintaining 112

global resources
managing your own 21

H
how to write requests 16

I
IMS

address space 2

IMS Application Menu 3

IMS Control Center 6

IMS procedures 14

IMSplex
See also type-2 commands

address spaces participating 2

commands 1

configuration recommendation 8

coordinating processes using macros 112

definition 1

illustration 2

issuing commands to 23

member 2

preparing for REXX SPOC API 221

querying statistics 24

single point of control 5

typical configuration 7

IMSSPOC environment 223

initiate a process 118

L
local online change 15

M
macros

CSLOREGO 87, 88

maintaining global resource information 98

message protocol 22

messages
routing by TYPE 92, 93

MODBLKS 16

MODSTAT 16

MTO 7

N
non-authorized clients

environmental requirements 20

O
OLCSTAT 16

OM
See also Operations Manager

client 91

command security 39

directives 94

OM (Operations Manager)
and SPOC 3

application programming interface 3

configuration requirements 7

functions provided 3

overview 3

registering a client 22

OM directives
and SCI Input exit routine 94

command 94

command response 96

CSLOMI response 96

query response 96

online change 15

Index 237

online change libraries 16

Operations Manager
requests

command deregistration 81

command response 88

CSLOMCMD 55

CSLOMQRY 74

user exit routines
client connection 40

input 44

security 50

Operations Manager (OM)
administration tasks 37

and SPOC 3

application programming interface 3

client requests 55

command routing 38

configuration requirements 7

definition and tailoring 31

execution parameters 31

functions provided 3, 31

initialization parameters PROCLIB member 35

overview 3, 31

registering a client 22

registering command processing clients 37

requests
CSLOMI 63

CSLOMREG 85

unsolicited output 82

sample startup procedure 32

shutting down 38

starting 37

statistics header 53

user exit list PROCLIB member 34, 35

user exit routines 40

BPE Statistics 52

output 46

XML output 205

P
parameter

allocated output 199

planning considerations 21

problem state 20

procedures
CQS 14

IMS 14

process step directive 146

process step response directive 148

PROCLIB
CQS 14

CQSIPxxx 14

CSL manager 15

DFSCDxxx 14

DFSCGxxx 14

DFSPBxxx 14

DFSVSMxxx 14

IMS 14

members 14

BPE 15

program
CSLULXCB 221

program properties table 13

protocol
message 22

request 22

Q
query resources 131

query response directive 96

querying statistics 24

quiesce request 185

R
RACF 155

command security 39

ready request 187

ready state 23

reason codes
CSLRMDEL 116

CSLRMPRI 120

CSLRMPRR 123

CSLRMPRS 127

CSLRMPRT 131

CSLRMQRY 135

CSLRMREG 139

CSLRMUPD 143

CSLSCBFR 173

CSLSCDRG 175

CSLSCMSG 181

CSLSCQRY 185

CSLSCQSC 186

CSLSCRDY 188

CSLSCREG 193

CSLSCRQR 196

CSLSCRQS 202

registered state 23

registering clients 136

releasing storage 19

repopulate structure directive 145

request protocol 22

requests
CSLZQRY

description 24

parameters 24

syntax 24

CSLZSHUT 26

description 26

parameters 27

syntax 27

environmental requirements 19

guidelines for writing 16

Operations Manager
command deregistration 81

command registration 85

command response 88

CSLOMCMD 55

CSLOMI 63

CSLOMQRY 74

238 Common Service Layer Guide and Reference

requests (continued)
Operations Manager (continued)

CSLOMREG 85

unsolicited output 82

planning considerations 21

protocol 22

Resource Manager
CSLRMDRG 117

CSLRMPRI 118

CSLRMPRS 123

CSLRMPRT 129

CSLRMQRY 131

deleting resources 113

query resources 131

sequence in which to issue 111

sequence of 92

sequence to issue 23

Structured Call Interface
buffer return 172

CSLSCQSC 185

CSLSCRDY 187

CSLSCREG 188

CSLSCRQR 194

CSLSCRQS 197

deregistration 174

query 182

send message 175

Resource Manager
clean up process 113

coordinating IMSplex-wide processes 112

exit routines
initialization/termination 107

master 113

requests
CSLRMPRR 121

CSLRMPRS 123

CSLRMPRT 129

CSLRMUPD 140

registering clients 136

sequence in which to issue 111

Resource Manager (RM)
administration tasks 104

configuration requirements 7

configuring CSL without 11

CSLRST1 110

CSLRST2 111

definition and tailoring 99

deregistering clients 117

exit routines
client connection 105

RM statistics 108

failures 113

function provided 4

global online change 16

initialization parameters 101

maintaining global resource information 98

overview 4, 97

registering a client 23

requests
CSLRMDRG 117

CSLRMPRI 118

Resource Manager (RM) (continued)
requests (continued)

CSLRMQRY 131

CSLRMREG 136

deleting resources 113

maintaining global resource information 112

process respond 121

process step 123

terminate process 129

updating resources 140

resource structure 4

sample CSLRIxxx member 103

sample startup procedure 100

sample user exit list PROCLIB member 104

shutting down 104

starting 104

startup procedure 99

statistics record 110, 111

user exit list PROCLIB member 103

resource structure 98

CQS support 14

failure 99

information stored 98

recovery 99

respond to a process 121

return codes
CSLRMDEL 116

CSLRMPRI 120

CSLRMPRR 123

CSLRMPRS 127

CSLRMPRT 131

CSLRMQRY 135

CSLRMREG 139

CSLRMUPD 143

CSLSCBFR 173

CSLSCDRG 175

CSLSCMSG 181

CSLSCQRY 185

CSLSCQSC 186

CSLSCRDY 188

CSLSCREG 193

CSLSCRQR 196

CSLSCRQS 202

REXX SPOC API 91

autonomic computing 227

batch job 225

examples 224

preparing the environment 221

reason codes 223

retrieving command responses 223

return codes 223

samples 224

setting up the IMSplex 221

subcommands 221

RM
See Resource Manager

RM (Resource Manager)
configuration requirements 7

configuring CSL without 11

function provided 4

overview 4

Index 239

RM (Resource Manager) (continued)
registering a client 23

resource structure 4

S
SCHEDxx member 13

SCI
See Structured Call Interface

SCI (Structured Call Interface)
configuration requirements 7

environmental requirements 19

exit routines
whether to use 21

functions provided 4

overview 4

ready state 23

registered state 23

registering to 22

TCB association 21

security
facility class 155

RACF 155

Structured Call Interface 155

shared queues
with a CSL 3

without a CSL 11

SHUTDOWN CSLPLEX command 29

shutting down the CSL 26

single point of control
See SPOC

single point of control (SPOC)
IMS Control Center 6

overview 5

REXX SPOC API 6

sending commands with 23

TSO SPOC 6

user-written 6

SPOC
REXX 3

used to access OM API 3

SPOC (single point of control)
IMS Control Center 6

overview 5

REXX SPOC API 6

sending commands with 23

TSO SPOC 6

user-written 6

startup procedure
Structured Call Interface 150

stem variable 223

storage, releasing 19

structure failed directive 146

Structured Call Interface
requests

CSLSCDRG 174

CSLSCMSG 175

CSLSCQSC 185

CSLSCREG 188

CSLSCRQR 194

ready request 187

Structured Call Interface (continued)
requests (continued)

send message 175

send request 197

security 155

user exits
BPE statistics 159

client connection 155

initialization parameters 152

Structured Call Interface (SCI)
administration 154

allocated output parameter 199

configuration requirements 7

definition and tailoring 149

exit routines 155

input 163

whether to use 21

functions provided 4

overview 4, 149

ready state 23

registered state 23

registering to 22

requests 171

buffer return 172

CSLSCRDY 187

deregistration 174

query 182

registration 188

sample startup procedure 150

shutting down 154

starting 154

startup procedure 149

TCB association 21

user exits
initialization/termination 157

List PROCLIB member 151

notify client 166

supervisor state 19

Syntax Checker
starting with IMS Application Menu 3

syntax diagram
how to read xii

SYS1.PARMLIB data set 13

system definition
for a Common Service Layer installation 13

MVS PPT 13

systems management tasks 1

T
TCB association 21

terminate process 129

Tivoli NetView environment 221

TSO
starting CSLULXCB program 221

TSO SPOC 31, 91

starting with IMS Application Menu 3

type-2 commands 1

used without Resource Manager 3

240 Common Service Layer Guide and Reference

U
unsolicited output request 82

updating resources 140

user exit routines
Operations Manager

BPE Statistics 52

client connection 40

input 44

introduction 40

output 46

security 50

user exits
Structured Call Interface

BPE statistics 159

client connection 155

initialization parameters 152

initialization/termination 157

List PROCLIB member 151

notify client 166

sample CSLSIxxx 154

sample list PROCLIB member 152

W
workstation SPOC 91

WTOR 7

X
XML output 205

and OM directives 94

command header 215

CSLOMCMD 209

CSLOMQRY 210

tag descriptions 212

Z
z/OS command syntax 28

z/OS program properties table 13

Index 241

242 Common Service Layer Guide and Reference

����

Program Number: 5655-J38

Printed in USA

SC18-7816-01

Sp
in
e
in
fo
rm
at
io
n:

 �
�

�

IM
S

Co
m

m
on

Se

rv
ic

e
L

ay
er

G

ui
de

an

d
R

ef
er

en
ce

Ve

rs
io

n
9

	Contents
	Figures
	Tables
	About This Book
	Summary of Contents
	IBM Product Names Used in This Information
	How to Read Syntax Diagrams
	How to Send Your Comments

	Summary of Changes
	Changes to the Current Edition of This Book for Version 9
	Changes to This Book for IMS Version 9
	Library Changes for IMS Version 9
	New and Revised Titles
	Organizational Changes
	Terminology Changes
	Accessibility Enhancements
	User Assistive Technologies
	Accessible Information
	Keyboard Navigation of the User Interface

	Chapter 1. Common Service Layer Introduction
	What Is The CSL?
	The CSL in An IMSplex
	A Simplified CSL Configuration

	CSL Managers
	CSL Operations Manager
	CSL Resource Manager
	CSL Structured Call Interface

	Using a Single Point of Control (SPOC) Program in CSL
	CSL Configuration Examples

	Chapter 2. Using The Common Service Layer in an IMSplex
	System Definition and Tailoring Considerations for the CSL
	Updating the z/OS Program Properties Table for the CSL
	Defining PROCLIB Members for the CSL
	CQS PROCLIB Members
	IMS PROCLIB Members
	Base Primitive Environment PROCLIB Members
	CSL Manager PROCLIB Members

	Global Online Change in a CSL
	Comparing Global and Local Online Change
	Enabling the Resource Manager for Global Online Change

	General Guidelines for Writing CSL Requests
	Using an ECB with CSL Requests
	CSL Manager Requests
	Releasing Storage with CSLSCBFR
	Environmental Requirements for SCI Requests

	Considerations for Writing Clients for the CSL
	Planning Considerations for Writing Clients for the CSL
	Registering Clients to CSL Managers
	Registering to SCI
	Registering an OM Client
	Registering an RM Client
	Enabling SCI Ready State
	Sequence for Coding CSL Requests

	Sending Commands to the IMSplex
	Querying Statistics from the IMSplex Using CSLZQRY
	CSLZQRY: Query Request
	CSLZQRY Request Parameters

	Shutting Down the CSL
	CSLZSHUT: Shut Down Request
	Format of the CSLZSHUT Request
	The CSLZSHUT Request Parameters

	Shutting Down the CSL Using z/OS Commands

	Using the z/OS Automatic Restart Manager with the CSL

	Chapter 3. CSL Operations Manager
	Overview of the CSL Operations Manager
	CSL OM Definition and Tailoring
	CSL OM Startup Procedure
	CSL OM Execution Parameters
	BPE Considerations for the CSL OM
	CSL OM Initialization Parameters PROCLIB Member

	CSL OM Administration
	Starting or Restarting the CSL OM
	Registering Command Processing Clients in a CSL
	Shutting Down the CSL OM
	Command Processing Considerations in a CSL OM
	CSL OM Command Routing
	CSL OM Command Responses
	CSL OM Command Security

	CSL OM User Exit Routines
	CSL OM Client Connection User Exit
	Contents of Registers on Entry
	Contents of Registers on Exit

	CSL OM Initialization/Termination User Exit
	Contents of Registers on Entry
	Contents of Registers on Exit

	CSL OM Input User Exit
	Contents of Registers on Entry
	Contents of Registers on Exit

	CSL OM Output User Exit
	Contents of Registers on Entry
	Contents of Registers on Exit

	CSL OM Security User Exit
	Contents of Registers on Entry
	Contents of Registers on Exit

	CSL OM Statistics Available through BPE Statistics User Exit
	CSL OM Statistics Header
	CSL OM Statistics Record CSLOST1
	CSL OM Statistics Record CSLOST2

	CSL Automated Operator Program Requests
	CSLOMCMD: Command Request
	CSLOMCMD Syntax
	CSLOMCMD Parameters
	CSLOMCMD Return and Reason Codes

	CSLOMI: API Request
	CSLOMI Syntax
	CSLOMI Request and Message Parameters
	CSLOMI Input= Parameters
	CSLOMI Return and Reason Codes

	CSLOMQRY: Query Request
	CSLOMQRY Syntax
	CSLOMQRY Parameters
	CSLOMQRY Return and Reason Codes

	CSL OM Command Processing Client Requests
	CSLOMBLD: Command Registration Build
	CSLOMBLD Syntax
	CSLOMBLD Parameters
	CSLOMBLD Example
	Overriding CSL OM Command Routing with the ROUTE Parameter

	CSLOMDRG: Command Deregistration Request
	CSLOMDRG Syntax
	CSLOMDRG Parameters
	CSLOMDRG Return and Reason Codes

	CSLOMOUT: Unsolicited Output Request
	CSLOMOUT Syntax
	CSLOMOUT Parameters
	CSLOMOUT Return and Reason Codes

	CSLOMRDY: Ready Request
	CSLOMRDY Syntax
	CSLOMRDY Parameters
	CSLOMRDY Return and Reason Codes

	CSLOMREG: Command Registration Request
	CSLOMREG Syntax
	CSLOMREG Parameters
	CLSOMREG Return and Reason Codes

	CSLOMRSP: Command Response Request
	CSLOMRSP Syntax
	CSLOMRSP Parameters
	CSLOMRSP Return and Reason Codes

	CSL OM Automated Operator Program Clients
	How AOP Clients that Run on the Host Communicate with the CSL OM
	How AOP Clients that Run on a Workstation Communicate with the CSL OM
	Command Processing Clients and the CSL OM
	CSL OM XML Output

	CSL OM Directives
	CSL OM Command Directive
	CSL OM Response Directives

	Chapter 4. CSL Resource Manager
	Overview of the CSL Resource Manager
	Maintaining Global Resource Information with the CSL RM
	RM’s Stored Resource Information

	Resource Structure Duplexing Requirements for CSL RM
	How the CSL RM Repopulates a Resource Structure
	How z/OS Rebuilds a Resource Structure

	CSL RM Definition and Tailoring
	CSL RM Startup Procedure
	CSL RM Execution Parameters
	CSL RM Initialization Parameters PROCLIB Member
	BPE Considerations for the CSL RM

	CSL RM Administration
	Starting the CSL RM
	Shutting Down the CSL RM

	CSL RM User Exit Routines
	CSL RM Client Connection User Exit
	Contents of Registers on Entry
	Contents of Registers on Exit

	CSL RM Initialization/Termination User Exit
	Contents of Registers on Entry
	Contents of Registers on Exit

	CSL RM Statistics Available through BPE Statistics User Exit
	CSL RM Statistics Header
	CSL RM Statistics Record CSLRST1
	CSL RM Statistics Record CSLRST2

	Writing a CSL RM Client
	CSL RM Requests
	Using CSL RM Requests to Manage Global Resources
	Using CSL RM Requests to Coordinate IMSplex-wide Processes
	CSLRMDEL: Delete Resources
	CSLRMDEL Syntax
	CSLRMDEL Parameters
	CSLRMDEL Return and Reason Codes

	CSLRMDRG: Deregister Clients
	CSLRMDRG Syntax
	CSLRMDRG Parameters

	CSLRMPRI: Process Initiate
	CSLRMPRI Syntax
	CSLRMPRI Parameters
	CSLRMPRI Return and Reason Codes

	CSLRMPRR: Process Respond
	CSLRMPRR Syntax
	CSLRMPRR Parameters
	CSLRMPRR Return and Reason Codes

	CSLRMPRS: Process Step
	CSLRMPRS Syntax
	CSLRMPRS Parameters
	CSLRMPRS Return and Reason Codes

	CSLRMPRT: Process Terminate
	CSLRMPRT Syntax
	CSLRMPRT Parameters
	CSLRMPRT Return and Reason Codes

	CSLRMQRY: Query Resources
	CSLRMQRY Syntax
	CSLRMQRY Parameters
	CSLRMQRY Return and Reason Codes

	CSLRMREG: Register Clients
	CSLRMREG Syntax
	CSLRMREG Parameters
	CSLRMREG Return and Reason Codes

	CSLRMUPD: Update Resources
	CSLRMUPD Syntax
	CSLRMUPD Parameters
	CSLRMUPD Return and Reason Codes

	CSL RM Directives
	CSL RM Repopulate Structure Directive
	CSL RM Structure Failed Directive
	CSL RM Process Step Directive
	CSL RM Process Step Response Directive

	Chapter 5. CSL Structured Call Interface
	Overview of the CSL SCI
	CSL SCI Definition and Tailoring
	CSL SCI Startup Procedure
	CSL SCI Execution Parameters

	BPE Considerations for the CSL SCI
	CSL SCI Initialization Parameters PROCLIB Member

	CSL SCI Administration
	Starting the CSL SCI
	Shutting Down the CSL SCI
	CSL SCI Security

	CSL SCI User Exit Routines
	CSL SCI Client Connection User Exit
	Contents of Registers on Entry
	Contents of Registers on Exit

	CSL SCI Initialization/Termination User Exit
	Contents of Registers on Entry
	Contents of Registers on Exit

	CSL SCI Statistics Available through BPE Statistics User Exit
	SCI Statistics Header CSLSSTX
	SCI Statistics Record CSLSST1
	SCI Statistics Record CSLSST2
	SCI Member Statistics Record CSLSST3

	CSL SCI IMSplex Member Exit Routines
	CSL SCI Input Exit Routine
	Contents of Registers on Entry
	Contents of Registers on Exit
	CSL SCI Input Exit Parameter List

	CSL SCI Notify Client Exit Routine
	Contents of Registers on Entry
	Contents of Registers on Exit
	CSL SCI Notify Exit Parameter List

	Writing a CSL SCI Client
	How SCI views authorized and non-authorized IMSplex members
	Sequence of CSL SCI Requests
	Advanced CSL SCI Requests

	CSL SCI Requests
	CSLSCBFR: Buffer Return Request
	CSLSCBFR Syntax
	CSLSCBFR Parameters
	CSLSCBFR Return and Reason Codes

	CSLSCDRG: Deregistration Request
	CSLSCDRG Syntax
	CSLSCDRG Parameters
	CSLSCDRG Return and Reason Codes

	CSLSCMSG: Send Message Request
	CSLSCMSG Syntax
	CSLSCMSG Parameters
	CSLSCMSG Return and Reason Codes

	CSLSCQRY: Query Request
	CSLSCQRY Syntax
	CSLSCQRY Parameters
	CSLSCQRY Return and Reason Codes

	CSLSCQSC: Quiesce Request
	CSLSCQSC Syntax
	CSLSCQSC Parameters
	CSLSCQSC Return and Reason Codes

	CSLSCRDY: Ready Request
	CSLSCRDY Syntax
	CSLSCRDY Parameters
	CSLSCRDY Return and Reason Codes

	CSLSCREG: Registration Request
	CSLSCREG Syntax
	CSLSCREG Parameters
	CSLSCREG Return and Reason Codes

	CSLSCRQR Request Return Request
	CSLSCRQR Syntax
	CSLSCRQR Parameters
	CSLSCRQR Return and Reason Codes

	CSLSCRQS: Send Request Request
	CSLSCRQS Syntax
	CSLSCRQS Parameters
	CSLSCRQS Return and Reason Codes

	Appendix A. CSL Operations Manager XML Output
	CSLOMI Output
	CSLOMCMD Output
	CSLOMQRY Output
	Descriptions of XML Tags Returned as CSL OM Response

	Appendix B. REXX SPOC API and the CSL
	Using the REXX SPOC API Environment with the CSL OM
	Setting Up the REXX Environment in a CSL
	Setting Up the IMSplex Environment
	IMS Subcommand
	ROUTE Subcommand
	CART Subcommand
	WAIT Subcommand

	Issuing Type-2 IMS Commands
	Retrieving Command Responses
	Ending the IMSSPOC Environment

	REXX SPOC Return and Reason Codes
	REXX Samples and Examples
	Sample REXX Program
	REXX Batch Job Example
	Autonomic Computing Examples
	Autonomic Example 1
	Autonomic Example 2

	Notices
	Trademarks

	Bibliography
	IMS Version 9 Library
	Supplementary Publications
	Publication Collections
	Accessibility Titles Cited in This Library

	Index

